

Universidad Politécnica de Madrid
ETSII

Estimating Physical Stellar Parameters from
High Resolution Spectra with a Deep Learning

Regression Approach

Supervisor
Joaquin Ordieres Meré

Master’s Thesis by

Jakob Salomonsson
Madrid, September 2018

 2

 3

Estimating Physical Stellar Parameters from High Resolution Spectra with a
Deep Learning Regression Approach

MASTER’S THESIS

Author:
 Jakob Salomonsson
 jakob.lsalomonsson@alumnos.upm.es

Supervisor:
 Joaquin Ordieres Meré
 j.ordieres@upm.es

Department of Industrial Engineering, Business Administration and Statistics
ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INDUSTRIALES (ETSII)

UNIVERSIDAD POLITÉCNICA DE MADRID (UPM)

c/ José Gutiérrez Abascal, 2. 28006 – Madrid
Tel: +34 9106 76700
Website: http://www.etsii.upm.es

Madrid, September 2018

Copyright ã 2018 by Jakob Salomonsson

 4

 5

Abstract

For life as we know it to exist, water is an absolute necessity. Astronomers are
therefore searching the cosmos for similar planets with similar conditions as our
own. Determining effective temperature (𝑇#$$), surface gravity (log𝑔) and

metallicity (𝑀 𝐻)⁄ of a star is important in understanding the orbiting planets.
Although explorations around the most common M-type stars have been
successful, little further effort has been made in searching around these stars
due to their faintness in the optical where most observations have been made.
 This Master’s Thesis makes use of data obtained by the CARMENES
project, which was initiated specifically for M-type star exoplanet searches, and
a theoretical BT-Settl dataset. The datasets underwent pre-processing in
several meticulous steps, involving normalising both within each data file and
over both datasets, calculating the impact of nearby flux values from nearby
wavelengths on a current wavelength, calculating rolling means and to cancel
out the importance of the distance between the Earth and the observed star.
 As the objective of this project was to evaluate the capabilities of Deep
Learning algorithms, more specifically Convolutional Neural Networks (CNNs),
with a regression approach, on predicting physical stellar parameters from
spectrograms, the pre-processed data was subsequently transformed to be
represented by spectra. Due to the size of the original input, the hardware
wasn’t able to process it, and as a result, had to be down-sized. Five distinct
models with five different down-sized input data were developed and evaluated.
 Based upon the obtained results, it can be concluded that the approach is
valid. It is possible to estimate physical stellar parameters with the use of CNNs
on spectra with a regression approach.

𝑇#$$ was very accurately estimated on all down-sized input data, with

mean squared errors of 0.000079 and 0.000003 for near infrared (NIR) and
visible (VIS) wavelengths respectively. This is equivalent to errors in the range
of 12 − 27𝐾 and 2 − 5𝐾, respectively, for M-type stars spanning the effective

 6

temperature range of 1300− 3000𝐾. Log𝑔 was estimated within uncertainties
of 0.0002dex and 0.14dex while 𝑀 𝐻⁄ within 0.058dex and 0.30dex for NIR and
VIS respectively for the best performing model. For 𝑇#$$, down-sized input data

is still reliable for estimations, yielding very good results even on the most down-
sized data, while less so for log𝑔 and 𝑀 𝐻⁄ . Especially log𝑔 experienced
substantial performance decline already after modest down-sizing.

KEYWORDS: Deep Learning, Convolutional Neural Networks, regression,
physical stellar parameters, CARMENES.

 7

Abstracto

Para que la vida como la conocemos pueda existir, el agua es una necesidad
absoluta. Por eso, los astrónomos están buscando en el cosmos planetas con
condiciones parecidas al nuestro. Determinar la temperatura efectiva (𝑇#$$) la

gravedad superficial (log𝑔) y la metalicidad (𝑀 𝐻)⁄ de una estrella es
importante para entender las planetas que la orbitan. Aunque búsquedas acerca
de las estrellas más comunes de tipo M han sido exitosas, poco esfuerzo se ha
realizado respecto a estas estrellas debido a su palidez en los instrumentos
ópticos donde la mayor parte de las observaciones han sido hechas.

Este Trabajo de Fin de Máster hace uso de datos obtenidos por el proyecto
CARMENES, el cual fue iniciado específicamente para buscar exoplanetas en
estrellas de tipo M, así como un conjunto de datos teórico BT-Settl. El conjunto
de datos fue pre-procesado en una serie de pasos minuciosos, entre ellos la
normalización tanto dentro de cada archivo como entre el conjunto de datos,
calculando el impacto de los valores de flujo cercanos de longitudes de onda
cercanas en una longitud de onda actual, calculando los medios de rodadura y
para eliminar la importancia de la distancia entre la Tierra y la estrella
observada.

Como el objetivo del proyecto era evaluar las capacidades de los
algoritmos de Aprendizaje Profundo (en inglés, Deep Learning),
específicamente las Redes Neuronales Convolucionales (en inglés,
Convolutional Neural Networks, o solo CNNs) con un enfoque de regresión para
estimar parámetros estelares físicos mediante espectrogramas, los datos pre-
procesados fueron subsecuentemente transformados para ser representados por
espectrogramas. Debido al tamaño de la entrada, el hardware no pudo
procesarlo, y como resultado, hubo que reducirlo. Cinco modelos distintos de
datos de entrada con cinco tamaños diferentes de reducción fueron desarrollados
y evaluados.

 8

Basado en los resultados obtenidos, se puede concluir que este enfoque es
válido. Es posible estimar parámetros estelares físicos con el uso de CNNs por
sus espectrogramas, utilizando un método de regresión.

El 𝑇#$$ fue estimado con una precisión muy alta por todas las entradas de

datos reducidas, con errores cuadráticos medio de 0.000079 y 0.000003
(equivalente a 12 − 27𝐾 y 2 − 5𝐾) para el espectro del infrarrojo cercano (NIR)
y el longitudes de onda visibles (VIS) respectivamente para el rango 1300−
3000𝐾. El log𝑔 fue estimado con incertidumbres de 0.0002dex y 0.14dex
mientras que 𝑀 𝐻⁄ entre 0.058dex y 0.30dex para NIR y VIS respectivamente.

Para 𝑇#$$, la entrada de datos reducida es aún confiable para

estimaciones, rindiendo muy buenos resultados incluso en los datos más
reducidos mientras que un poco menos para log𝑔 y 𝑀 𝐻⁄ . Especialmente, log𝑔
experimentó un declive en su desempeño después de una modesta reducción.

PALABRAS CLAVE: Aprendizaje Profundo, Redes Neuronales
Convolucionales, regresión, parámetros estelares físicos, CARMENES.

 9

Acknowledgements

I have many to thank for the completion of this Master’s Thesis. First of all, and
maybe the biggest reason for making it possible, is my tutor Joaquin Ordieres
Meré. Without his professionalism, competence, insights and help I would have
found myself lost many times. This project would have never started, even less
finished without him. Thank you very much for always being available, if not
physical, then by email, at any time of the day, including holidays.

A big thanks to my colleagues and friends at the office as well, José, John,
Isaac, Ebru, Hossein and Sun for the awesome discussions we’ve had during
lunches and breaks. Both related to the field and other completely different
topics. Thank you, it’s been great fun!

Last but absolutely not least, I would like to thank my beloved family,
Susanne, Ulf, Maja, Artur and Lydia for always being there, both during hard
and beautiful moments. Thank you, you’re the best and I love you!

This research has made use of the Spanish Virtual Observatory
(http://svo.cab.inta-csic.es) supported from the Spanish MINECO/FEDER
through grant AyA2014-55216.

 10

 11

Table of Contents

CHAPTER 1 INTRODUCTION AND OBJECTIVE .. 13

1.1 INTRODUCTION ... 13
1.2 OBJECTIVE ... 16

CHAPTER 2 RELATED WORKS .. 17

2.1 A. GONZÁLEZ-MARCOS ET AL. (2016) .. 17
2.2 NVIDIA CORPORATION (2016) ... 19
2.3 L. M. SARRO ET AL. [2017] .. 20
2.4 SHUN MIAO ET AL. (2016) ... 21

CHAPTER 3 THEORIES AND FRAMEWORKS .. 23

3.1 CONVOLUTIONAL NEURAL NETWORKS .. 23
3.1.1 Background ... 23
3.1.2 Biological and Artificial Neurons.. 23
3.1.3 Input/Output Volumes and Kernel Operations .. 24
3.1.4 Architecture Overview .. 25

3.2 ACTIVATION FUNCTIONS ... 27
3.2.1 ReLU Activation Function .. 27
3.2.1 Linear Activation Function ... 27

3.3 LOSS FUNCTION MEAN SQUARED ERROR .. 28
3.4 TRAIN, VALIDATION AND TEST SETS ... 29
3.5 BRIEF INTRODUCTION TO KERAS AND TENSORFLOW 30

3.5.1 Keras ... 30
3.5.2 TensorFlow ... 31

CHAPTER 4 DATA PRE-PROCESSING .. 33

4.1 CARMENES AND BT-SETTL DATA COLLECTION .. 33
4.2 DATA COMPREHENSION .. 36

4.2.1 Carmenes Data ... 36
4.2.2 BT-Settl Data .. 39

4.3 PRE-PROCESSING THE CARMENES DATA SET ... 40
4.4 PREPARING FOR POWER MATRICES ... 43
4.5 POWER MATRIX CREATION.. 49

CHAPTER 5 CNN ANALYSIS .. 53

 12

5.1 CNN ARCHITECTURE.. 53
5.1.1 Main CNN Architecture .. 53
5.1.2 Alternative CNN Architectures .. 57

5.2 FEEDING THE MODELS WITH DATA ... 61
5.3 TRAIN, VALIDATE AND TEST SETS ... 62
5.4 NORMALISING... 63
5.5 EXTRACTING THE PHYSICAL STELLAR PARAMETERS .. 64
5.6 TRAINING THE CNN MODELS ... 64

CHAPTER 6 RESULTS AND DISCUSSION .. 67

6.1 MODEL VALIDATION ... 67
6.2 ESTIMATING TEMPERATURE, SURFACE GRAVITY AND METALLICITY 69

6.2.1 NIR.. 69
6.2.2 VIS .. 72

6.3 ALTERNATIVE CNN ARCHITECTURES’ PREDICTIONS 74
6.3.1 NIR down-sized 5, 10, 20 and 30 times ... 74
6.3.2 VIS down-sized 5, 10, 20 and 30 times ... 76

6.4 ESTIMATED PARAMETERS FOR THE CARMENES DATASETS 81

CHAPTER 7 ORGANISATIONAL ASPECTS ... 83

7.1 GANTT CHART .. 83
7.2 BUDGET.. 85

CHAPTER 8 CONCLUSIONS AND FUTURE WORK ... 87

8.1 CONCLUSIONS .. 87
8.2 FUTURE WORK ... 88

BIBLIOGRAPHY ... 91

APPENDIX .. 99

 13

Chapter 1 Introduction and Objective

1.1 Introduction

The first evidence of a planet outside our own solar system, i.e. exoplanet, was
found as early as 1917 [1]. However, the findings were so ahead of their time
that they were not recognised as such for a century to come. Thus, the first
scientific confirmed detection came in 1992 when A. Wolszczan and D. A. Frail
used a radio telescope to detect two planet-sized bodies orbiting a pulsar [2].

One can argue that the discovery increased the interest in the field both
among scientist as well as the public. This was later indirectly confirmed with
a huge investment in the Kepler Mission, where a telescope was sent into orbit
in 2009 to discover Earth-size planets orbiting distant stars [3]. The exoplanet
discovery rate has increased steadily over time since the first findings, leading
to a total of 3774 confirmed exoplanets as of August 8th 2018 [4].

Humanity has taken great leaps forwards since the time when Galileo
Galilei was put into life time house arrest for strongly arguing in favour for the
Copernican model. However, the holy grail in astronomy, and arguably in any
other field, would be the discovery of life on another planet. For life as we know
it, water is an absolute necessity. Astronomers are therefore searching the
cosmos for similar planets with similar conditions as our own. Although
scientists’ understanding of what makes up a habitable zone continues to evolve,
it can generally be depicted as a band not too close nor too far away from the
host star, where liquid water can be found. See Figure 1.1 below. As stars and
planets come in many types and sizes, the interplay between those factors

 14

defines the characteristics of the habitable zone. If we stick to the idea of
“looking for something we already know”, then small, Earth-sized rocky planets
would be our best bet to find life [5].

Not only is the size and composition of the stars and planets critical to
hold life, but so is time. Giant bright stars burn out within a few million years
while smaller dwarfs, as our own Sun, can produce a steady shine for billions of
years. It might be enough with a few hundred million years for microscopical
single-celled life to form. Reasoning from what we know about life on Earth
though, it’s most likely a far too short time frame for advanced life forms, such
as our own, to evolve.

Based on conservative measurements of small portions of the sky and
extrapolating, there are around 100 billion stars in our Milky Way galaxy [6].
Recent statistical calculations estimate that there is, at least, one planet
orbiting each star in the galaxy [4]. With the same method, it can be estimated
that there are around 10 billion galaxies in the observed universe, yielding some
1,000,000,000,000,000,000,000,000, or 1023, planets to search.

Most of the exoplanet searches have been conducted on G-type Sun stars.
See Figure 1.2 for Star Spectral Classification. Despite M-type stars being the

Figure 1.1: Habitable Zone [5]. If the planet is too close to its host star, the
temperature will be too high to hold life as we know it. Conversely, if it’s too far
away, it’ll be too cold.

 15

most common star type in the galaxy and that searches around these stars have
proven successful, they haven’t been as extensive as around K, G and F stars.
The main reason for this is their faintness in the optical, where most of the
radial velocity (RV) searches are being performed [7] [8]. Since no surveys on
high-resolution near-infrared spectrograph dedicated to planet search existed,
the CARMENES study was initiated.

CARMENES (Calar Alto high-Resolution search for M dwarfs with
Exoearths with Near-infrared and optical Échelle Spectrographs) is a Spanish-
German consortium project between 11 different organisations. Among these
are the Complutense University of Madrid, the Max-Planch-Institute in
Heidelberg, Germany, and the Calar Alto Astronomical Observatory in Almería,
Spain [9]. The project is targeting some 300 M dwarfs with the main scientific
goal of detecting Earth-sized planets (2 𝑀:;<=>< 𝑀?#@	BC;D#=< 5 𝑀:;<=>) in the

habitable zone of the host star. Cool dwarfs are targeted where the habitable
zone lies closer to the star. The research conducted will thus provide a
comprehensive overview of planetary systems orbiting M-type stars in the
northern celestial hemisphere, where follow-up studies can further investigate
their habitability [10].

To better understand a star and its possible exoplanets, it is of importance
to determine several physical parameters such as effective temperature, surface

Figure 1.2: Morgan-Keenan Modern Star Type Spectral Classification displaying
the colour and size distribution of stars.

 16

gravity and metallicity. By using high resolution data obtained from the
CARMENES study, and a synthetical BT-Settl dataset generated by a model,
spectrograms can be created. As the BT-Settl data comes with physical
parameters unique for the modelled stars, Deep Learning algorithms can be
applied to analyse the spectrograms for patterns, ideally making it possible to
predict the stars’ parameters. Earlier research has attempted to determine
these parameters using other Machine Learning algorithms [11]. However, the
use of Deep Learning algorithms might also contribute to such goal, and thus,
this project is an exploratory analysis regarding the feasibility of Convolutional
Neural Networks (CNNs) in the field.

The Deep Learning techniques employed in this Master’s Thesis are
applicable in a wide set of sectors and systems, covering Business Intelligence
(BI), Management Systems, Decision Making Systems etc. etc., where these
algorithms increasingly have been implemented for their capacity to process and
analyse vast amounts of data. By finding patterns previous methods weren’t
capable of and making predictive and normative suggestions, they have become
the foundation in the BI sector [12]. Through minor or no adjustments, the very
same methods can be applied on a wide set of fields. As a manager or decision
maker in the 21th century, it will be ever increasingly important to have an
understanding of their potentiality.

1.2 Objective

The objective of this Master’s Thesis is to evaluate the capabilities of Deep
Learning with a Regression approach on estimating physical stellar parameters
from spectra.

 17

Chapter 2 Related Works

CNNs have been very successful in image classification tasks with many studies
carried out in the field, such as [13] [14] [15] [16] and [17]. Other studies
displayed how Deep Forest is an easier and potent alternative to CNNs with, in
some cases, both superior results and faster implementation process [18] [19].
However, questions can be raised in the latter about the complexity of the CNN
model’s architecture used for comparison. The works reviewed in this chapter
demonstrates some studies where different algorithms have been used in
regression tasks to determine one or several output parameters.

2.1 A. González-Marcos et al. (2016)

A. González-Marcos et al. analysed and compared several data compression
techniques in this paper with the conclusion that independent component
analysis (ICA) performed best on all the different signal-to-noise ratio (SNR)
arrangements tested [20].

The experiments were performed on high-resolution (𝑚 𝑠⁄ accuracy)
spectra of stars in the temperature range of 4000 − 8000 K. By training a simple
support vector machine (SVM) model with basic configurations, the objective
was to determine effective temperature (𝑇#$$), surface gravity (log𝑔), metallicity

([𝑀 𝐻⁄]) and/or the alpha-to-iron ratio ([𝛼 𝐹𝑒⁄]). Furthermore, the team
approached the problems as a regression task rather than a classification task,
which is often the case. The performance was later measured on the evaluation
set using the root-mean-square error (RMSE).
 The synthetic dataset used in the study was compressed with three linear
data compression techniques; principal component analysis (PCA), independent

 18

component analysis (ICA) and discriminative locality alignment (DLA), as well
as with three nonlinear techniques that can be generalised on unseen data;
kernel PCA, wavelets and diffusion maps (DMs).
 The results for 𝑇#$$ are displayed in Figure 2.1, where the RMSE is

plotted against the dimensionality compression for different SNR regimes. The
lowest error was obtained with a 20 dimensionality compression along all the
noise regimes for ICA, closely followed by Kernel PCA.

However, a question arise from examining this study, which is their use
of a fairly simple SVM model to predict the stellar parameters. A more complex
deep learning model, such as a CNN, might find patterns in the dataset the SVM
can’t find, even when the dataset is heavily compressed. If that’s the case, the
conclusions drawn in this study might be more relevant for different Machine
Learning algorithms, and not so much for Deep Learning.

Figure 2.1: Temperature estimation error as a function of number of dimensions used for data
compression [20]. SNR 100, 50, 25 and 10.

 19

2.2 NVIDIA Corporation (2016)

13 different authors for the NVIDIA Corporation empirically demonstrated in
2016 that CNNs can be learned the entire task of following a lane and road,
without extra systems for road and lane marking detection, path planning and
control [21]. This end-to-end approach proved remarkable potent and could for
example be used in self-driving cars. The authors argue that this solution, if

Figure 2.2: CNN architecture used in the NVIDIA paper. The network holds some 27 million
connections and 250 thousand parameters [21].

 20

further developed, might lead to both better overall performance and smaller
systems than current.

The network learned to drive on local roads and on highways, with or
without lane markings, using the human steering angle as only training signal.
It also operates successfully in areas with less visual guidance such as parking
lots or during snowy and rainy weather. The model was trained on a
surprisingly small amount of data, obtained from less than one hundred hours
of driving, from a front mounted car camera.

The model network consist in total of 9 layers; a normalisation layer, 5
convolutional layers and 3 connected layers, where the initial layer was hard-
coded and, thus, not adjusted during the learning process. Figure 2.2 displays
the CNN architecture.

Interestingly, the team approached the problem in this paper as a
regression task, with the steering angle as an output. Thus, the authors
displayed that processing complex images with CNNs can result in reliable
output in regression tasks.

2.3 L. M. Sarro et al. [2017]

L. M. Sarro et al. displayed in this paper that physical stellar parameters of M-
type stars can be estimated from synthetic BT-Settl data with regression models
[11]. The evaluated models were eight in total:

• Random Forest Regression Models
• k-Nearest Neighbours
• Generalised Boosted Regression Models
• Multi-layer Perceptron Neural Networks

• Bagging with Multiadaptive Spline Regression Models
• Support Vector Regression with Gaussian Kernel
• Kernel Partial Least Squares Regression

 21

• Rule Regression models

The input data was pre-processed in several steps, although not as to be
represented as spectrograms, before fed into a GA algorithm who selected the
relevant parts in the spectra. Each one of the eight models were subsequently
evaluated starting from the selected parts.

Despite the prediction errors for the best performing Random Forest
Regression model were fairly high (≈ 0.25	𝑑𝑒𝑥, or 𝑀𝑆𝐸 ≈ 0.61) for metallicities,
the team was able to detect five sub dwarfs for further investigation.

2.4 Shun Miao et al. (2016)

Shun Miao et al. demonstrated in this paper that it is possible to estimate
transformation parameters for medical X-ray images with a CNN regression
approach, referred to as Pose Estimation via Hierarchical Learning (PEHL) [22].

Figure 2.3: Success rates with and without PEHL [22].

 22

To facilitate accurate diagnosis and/or to provide advanced image
guidance, it is desirable to bring the pre-operative 3-D data and intra-operative
2-D data into the same coordinate system. Such mapping is highly complex and
training a regressor to undo the mapping is a difficult task. As the
transformation should operate in real-time, the process needed to be fast, and
thus, a smaller CNN architecture was chosen.

As displayed in Figure 2.3, the model performed very well (see the star-
dotted PEHL lines) and achieved nearly perfect (99.6%) parameter estimations
in few iterations. To confirm the PEHL model’s importance, the authors disabled
and replaced it with an implementation of a companion algorithm using HAAR
features (HF) with Regression Forest (RF). The results confirm the CNN’s
importance in image processing as the success rate decreased to around 90%
without it. LIR, HPR and PSP were all different configurations of the CNN
regression model.

 23

Chapter 3 Theories and Frameworks

3.1 Convolutional Neural Networks

3.1.1 Background

Convolutional Neural Networks (CNN) are a specific type of Artificial Neural
Networks (ANN). They have since some vital breakthroughs in research,
especially with the publication of Yann LeCun et al.’s paper in 1998 [23],
delivered state of the art performance in a magnitude of tasks. They are
successfully being applied in natural language processing [24], image and video
recognition [17] [21], recommender systems [25], among other areas. AlphaGo,
who beat the world’s best Go player Lee Sedol in 2016 [26], a game which was
previously considered impossible for artificial machines to master, was powered
by CNNs.
 According to the authors in the 1998 paper, CNNs are biologically-
inspired models. Earlier research where mammals’ visualisation of the world
was explained [27], inspired the engineers to develop similar artificial pattern
recognition systems.

3.1.2 Biological and Artificial Neurons

The basic computational unit in both the brain and CNNs is a neuron [28]. There
are approximately 86 billion neurons in the human brain and, depending on the
size and complexity of the architecture, thousands, millions or even billions, in
a CNN model.

Figure 3.1 displays a drawing of both a biological (left) and artificial
(right) neuron. Each neuron receives input signals from several dendrites (e.g.

 24

𝑥P), multiplies the input with its weights (𝑤P), adds a bias (b) and lastly, applies
the activation function before it outputs the resulting signal through its axon.
The axon then branches further out connecting with dendrites of other neurons.

The idea is that the synaptic strengths (or weights 𝑤) are learnable, and
they control the strength, direction (positive or negative weight) and influence
one neuron has on another. If the final sum is above some threshold, the neuron
fire, sending information along its axon. The firing rate is modelled by activation
functions where the two chosen for this project are further explained in chapter
3.2.

3.1.3 Input/Output Volumes and Kernel Operations

CNNs are frequently applied to image data of different kinds and an image is
merely a 2D matrix of pixel values, normally in the interval [0, 255]. However,
coloured RGB images presents a third dimension making the input 3-
dimensional. Hence, for a given RGB (Red, Green, Blue) image of size [200 x
200] pixels, each image will be represented by three matrices, one for each
colour. The input volume would thus be [200 x 200 x 3] (width, height, colour
channels). See Figure 3.2 for an illustrative explanation.
 CNN tries to learn an image’s features in order to be able to recognise
what it constitutes of. More specifically, if used in Face Detection, a nose or a

Figure 3.1: A drawing of a biological neuron (left) and its artificial equivalent (right) [28].

 25

mouth would be treated as a feature and subsequently distinguished and
learned by the different layers.

The features are detected by the convolution kernel, or filter, by
processing the entire input volume in smaller sections, shown as a red square
in the figure, and mapped onto the Activation Map (or Feature Map) [29]. This
process is also referred to as convolution of an image input and can
mathematically be described as (for 𝑡𝑎𝑛ℎ non-linearities):

 ℎVWX = tanh	((𝑊X ∗ 𝑥)VW 	+ 	𝑏X) (1)

Where ℎVWX is the activation map, whose filters are determined by the weights

𝑊X, the input signal 𝑥 and the bias 𝑏X.
 The Activation Map contains the most relevant features, found by the

kernel, to explain the characteristics of the image input. This is done for all
colour channels. Depending on the kernel size and stride chosen, the process
will run faster or slower, detecting features with lower or higher accuracy.

3.1.4 Architecture Overview

CNNs constitute of several layers, each made up of a set of neurons. Every
neuron in a layer is connected to a small section of the layer before it, instead of
being fully-connected as for Regular Neural Nets. This has the advantage that
far less connections, and thus weights, are needed, leading to faster training and

Figure 3.2: RGB Input Image Volume with Kernel Matrix and Activation Map [53]. The Input
Volume has in this case the size [4 x 4 x 3].

 26

less overfitting, i.e. better performance. Moreover, each layer in a CNN
transforms the 3D input volume to a 3D output volume through an activation
function [29].
 The final output layer will result in a vector as the architecture will
reduce the full image into one dimension. Figure 3.3 demonstrates a simple
architecture with a 3D input image, two hidden layers and an 1-dimensional
output layer.
 Building CNN architectures is accomplished through stacking one or
several layers, where TensorFlow and Theano are common libraries. Three main
layers are used: Convolutional Layers (Conv), Pooling Layers (POOL) and Fully-
Connected Layers (FC), where the Conv Layers are the main building blocks,
performing the majority of the heavy computations. Frequently, POOL Layers
are used in pair with the Conv Layers to downsample along the spatial
dimensions, from [32, 32, 3] to [16, 16, 3], for example. The FC layers will lastly
compute the class scores for a classification task, or as in the case of the
regression problem addressed in this thesis, predictions for each one of the
desired parameters. Class scores or predictions are thus a CNN architecture’s
output.

Figure 3.3: Simple architecture overview of a regular 3-layer Neural Network with two hidden
layers [29]. Note the 1-dimensional vector in the output layer (in green).

 27

3.2 Activation Functions

3.2.1 ReLU Activation Function

Most recent Deep Learning networks are now using rectified linear units (ReLU)
for the hidden layers. Recent research has shown that ReLUs result in much
faster training for larger and more complex networks [13]. It computes the
function:

 𝑓(𝑥) = max	(0, 𝑥) (2)

which is zero when 𝑥 < 0 and linear with an inclination of 1 when 𝑥 > 0. See
Figure 3.4 left for an illustrative explanation.

 The disadvantage of ReLUs is how fragile they can be when trained with
larger learning rates, resulting in big disactivated chunks of the total network.
However, by setting the learning rate properly, this is a less frequent problem
[28].

3.2.1 Linear Activation Function

The linear activation function gives a range of activations and can thus be used
in the last layer for a regression problem [30]. The computed function is very
simple (see Figure 3.4 right for a visual representation):

Figure 3.4: ReLU (left) and linear (right) activation functions.

 28

 𝑓(𝑥,𝑚) = x ∗ m (3)

However, it shouldn’t be used in a hidden layer if there are more than
one, since several hidden layers (each one with a linear activation function) will
always be replaceable with one single layer. E.g. ten linear functions will always
produce a linear output.

3.3 Loss Function Mean Squared Error

A highly useful quantity to measure during training is the loss. It is evaluated
on the individual batches (a group of training examples) during training and is
helpful for adjusting the different hyperparameter settings to achieve a more
efficient learning [31].
 A common loss function for regression problems is the Mean Squared
Error (MSE). It measures the average of the difference between the predicted
quantity and the true answer, and is explained mathematically by:

𝑀𝑆𝐸 = 	

1
𝑁i(𝑌V − 𝑌kV)l

?

Vmn

 (4)

Where 𝑁 is the number of predictions,	𝑌k the predicted and 𝑌 the true value.
Efficient learning is desirable as it speeds up the entire learning process

as well as leads to better results. If an inadequate learning rate is chosen the
network might never converge (i.e. find a solution), see the yellow line in Figure
3.5, or might find a suboptimal solution (green line). The blue line results in
almost linear improvements with its low learning rate, and will thus take longer
to train. A learning rate equivalent to the red line is desirable as the training is
faster. The loss is initially decreasing in a higher pace but over time, when closer
to convergence, decreases.

 29

The right part of Figure 3.5 displays a typical and acceptable loss function
over time as the model is trained (however, it might indicate a slightly low
learning rate based on its decay, and a too low batch size as the loss is slightly
too noisy).

3.4 Train, Validation and Test Sets

In order to train a model data is needed, and the dataset used for this is referred
to as the training set. The model will see and learn from this dataset. The
validation set on the other hand, is devoted to validate the model’s performance
during training. The model will not be trained on this dataset. Subsequently,
the trained models’ performance will be tested on the, by the model, unseen test
set. It’s necessary that the model hasn’t been trained on the test set as it would
be equivalent to cheating (imagine a human doing a test where she has seen all
the answers in advance). The main objective of the validation and test sets is to
test the model’s ability to predict on previously unseen data in order to mitigate
overfitting. An overfitted model performs very well, or perfectly, on the training
set but fails in predicting on unseen data.

Figure 3.5: Depicting different learning rates and their behaviour (left), and an example of
an acceptable loss function over time during training (right) [31].

 30

 Depending on the size and characteristics of the total dataset, the split
between train, validate and test sets can differ. However, a good practise is to
choose 80% for training and 10% for each one of the validate and test sets [32]
[33]. This approach is chosen for this project.

3.5 Brief Introduction to Keras and TensorFlow

3.5.1 Keras

Keras is a high-level open source neural networks API written in Python, with
the possibility to run on top of TensorFlow, Theano or CNTK computational
backends [34]. The main idea with Keras is to provide a smooth and fast
implementation for starting with deep learning, enabling fast experimentation
independently of the backend used. Start-ups as well as huge corporations use
Keras for its friendly but still powerful user interface. It is backed by key
companies such as Google, AWS and Microsoft and had, as of November 2017,
more than 200,000 individual users.
 A model is created by combining several standalone modules such as
neural layers, activation functions, cost functions, optimisers, etc. It is easy to
add and create new tailor-made modules, allowing total expressiveness, making
Keras convenient for advanced research as well as fast implementations in the
industry.
 An example of creating a neural network model, before training and
evaluating it, is shown in Code Snip 3.1 below.

from keras.models import Sequential
from keras.layers import Dense

Create the model architecture
model = Sequential()

 31

model.add(Dense(units=64, activation='relu', input_dim=100))
model.add(Dense(units=10, activation='softmax'))

Compile the model
model.compile(loss='categorical_crossentropy',
 optimizer='sgd',
 metrics=['accuracy'])

Fit the model to the training data
model.fit(x_train, y_train, epochs=5, batch_size=32)

Train the model
model.train_on_batch(x_batch, y_batch)

Evaluate the performance of the trained model
loss_and_metrics = model.evaluate(x_test, y_test, batch_size=128)

Code Snip 3.1: Displaying a Keras implementation of building a neural network model, train it
and finally evaluate its performance.

3.5.2 TensorFlow

TensorFlow is an open source software library, for implementing numerical
computational machine learning algorithms as well as for executing these [35].
It was originally developed by the Google Brain team within Google’s AI
organisation and can be used on a variety of units (CPUs, GPUs, TPUs) on many
different platforms (desktops, servers, mobiles, etc.).
 The API is offered in several languages (Python, C++, Java, Go and
Swift), but the Python API is the most complete, stable and easiest to use.
TensorFlow is used for conducting research as well as for deploying full scaled
machine learning solutions in the industry within a wide range of fields such as
natural language processing, speech recognition, geographic information
extraction, information retrieval, computer vision, robotics, drug discovery etc.

Figure 3.6 displays a typical TensorBoard for a CNN architecture,
visualising the architecture graph. With thousands of nodes, such graphs can
often be highly complex, but TensorBoard collapse low-degree nodes into blocks

 32

and separate high-degree nodes, resulting in a more comprehensive
visualisation. Being a graphical tool for TensorFlow, it can also be used in Keras.

Figure 3.6: TensorBoard graph visualisation of a CNN model in TensorFlow [54].

 33

Chapter 4 Data Pre-processing

4.1 Carmenes and BT-Settl Data Collection

Two different datasets were collected: the low resolution BT-Settl data set
obtained from the Spanish Virtual Observatory (SVO), an affiliate of the
European Space Agency (ESA), and the higher resolution Carmenes dataset,
obtained from the CARMENES project (see chapter 1.1).
 To collect the Carmenes dataset, M-type stars had been observed with the
3.5 m telescope at the Calar Alto Observatory, and registered by the
CARMENES RV instrument. Earlier simulations concluded that a wide range
of both visible and near-infrared wavelengths provide the best results for RV
observations of M-dwarfs [36]. This approach will not only yield the highest
possible precision, but also prevent false-positive RV signals caused by stellar
activity.

The instrument included two separate échelle spectrographs, one for
visible wavelengths (VIS), see Figure 4.1, and one for near infrared wavelengths
(NIR), covering the total range 520 to 1710	𝑛𝑚, with a spectral resolution of at
least 𝑅 = 80,400 [37]. To achieve the projects’ goal of 1	𝑚/𝑠 radial velocity
precision, the spectrographs were installed inside climatic vacuum chambers
(Figure 4.2), located in the observatory’s dome. This enabled the necessary
environmental conditions where the temperature had to be held constant within
a range of ±0.01	℃ during the entire observation period. The NIR instrument
operated at around 140	𝐾 while the VIS at room temperature. Chambers and
spectrographs for VIS and NIR were developed to be as similar as possible.

 34

The NIR spectrograph was equipped with a 4112	𝑥	4096 pixel CCD in the
520 − 1060	𝑛𝑚 range, while the VIS had installed a 2048	𝑥	2048 pixel HgCdTe
detector in the 960 − 1710	𝑛𝑚 range. They were both separately connected

Figure 4.2: The vacuum chamber for the VIS spectrograph, with an inner
diameter and length of 1400 and 3500 mm respectively [37].

Figure 4.1: VIS light detector installed in its protective cryostat [37]. Length
around 300 mm.

 35

Table 4.1: Specification summary for the VIS and NIR equipment used to obtain the Carmenes
dataset [38].

directly to the 3.5 m telescope with optical fibres, providing stable input
illumination for the spectrographs. See Table 4.1 for the full equipment
specification summary for the Carmenes VIR and NIR spectra. Although the
observations and subsequent data collection was out of scope for this project, a
total of around 100 MB of Carmenes data was downloaded.

BT-Settl is a theoretical dataset, downloaded from SVO’s website, where
the total database contains around 556 GB of data, covering 126,000 spectra
[39]. It is generated by PHOENIX’s NextGen model with validity across the
entire parameter range. Despite that NextGen isn’t the latest version of the
model, it provides the best spectra coverage for M-type stars, which is why it
was chosen for this project. A uniform grid spanning over (1200	 ≤ 	𝑇#$$ ≤

	4900	𝐾) in steps of 100	𝐾, log𝑔 = 	−0.5 to 6.0 in steps of 0.25 dex and metallicity
from −2.5 to +0.5 in steps of 0.5 is provided by the model. The gravitational
settling of sedimentation, supersaturation, nucleation and mixing is taken into
account by the model [40]. 62 GB was totally downloaded, covering a wide range
of temperatures, surface gravities and metallicities.

 VIS channel NIR channel
Wavelength coverage, Δλ 520-1060 nm, ([V]RIZ) 960-1710 nm, (YJH)

Detector 1 x 4kx4k e2v
CCD231-84

2 x 2kx2k Hawaii-2RG,
(2.5 µm cutoff)

Wavelength calibration Th-Ne lamps &
Fabry-Pérot etalon

U-Ne lamps & Fabry-
Pérot etalon

Working temperature, Twork 285.000 ± 0.005 K 140.000 ± 0.005 K

Spectral resolution, R 94.600 80.400
Mean sampling 2.8 pixels

Mean inter-fiber spacing 7.0 pixels

Cross disperser Grism, LF5 glass Grism, infrasil

Reflective optic coating Silver Gold

No. of orders 61 28
Échelle grating 2 x Richardson Gratings R4 (31.6 mm-1)

 36

4.2 Data Comprehension

4.2.1 Carmenes Data

The high-resolution Carmenes datasets are stored in separate VIS and NIR
files, named according to the date and time of the observations and the spectra.
The wavelength ranges are divided into orders, where the VIS files constitutes
of 61 orders (in the range 520 − 1060	𝑛𝑚), each one with around 4096
measurements, yielding some 250,000 measurements in total per file. The
equivalent numbers for NIR are 28 orders (range 960 − 1710	𝑛𝑚) and 4080
measurements, resulting in around 114,000 total measurements.
 Table 4.2 shows the ten first rows of the first order for a raw NIR input
file. The equivalent table for VIS can be found in Appendix A. Wavelengths, Flux
1 (from a stellar) and Flux 2 (from a black body) are stored in the files. As a
result of insufficient, or no photons reaching the spectrograph in some edging
wavelengths, these flux positions have been assigned a NaN (Not A Number)
value. The reason for this is that there’s not enough information for the
estimations to be made, and as a result, the beginning and end of many orders
for fluxes contains NaN. These will later be removed in the pre-processing steps.

Table 4.2: The first 10 rows in the first order from a raw Carmenes NIR data input file. Each
datafile constitutes of 28 orders , resulting in around 114,000 measurements. The equivalent
numbers for VIS are 61 orders and around 250,000 measurements.

 Wavelength (Angstrom) Flux 1 Flux 2
0 9603.606112 NaN NaN
1 9603.659492 NaN NaN
2 9603.712867 NaN NaN
3 9603.766237 NaN NaN
4 9603.819602 NaN NaN
5 9603.872962 NaN NaN
6 9603.926317 0.082979 0.002337
7 9603.979667 0.107247 0.002717
8 9604.033011 0.105707 0.002713
9 9604.086350 0.113610 0.002797

 37

 Three VIS (top) and their three NIR equivalents (bottom) raw input data
files are plotted in Figure 4.3. Inspecting the plot, we can confirm that the
energy level, Flux, for the visual wavelengths is both higher, and with larger
variations, than the NIR’s by a factor of around 1𝑒7. Only the Flux 1 data has
been plotted in relation to the wavelength, and from here on, Flux (or flux) will
exclusively refer to Flux 1 as we are only interested in flux from stellars.

Due to the physical design of the sensors, there’s space between the
orders, something which is more evident in the NIR plot and for the larger
wavelengths. A common organisation of the Carmenes dataset is therefore
needed, where the first step is described in chapter 4.3 and then further
prepared in chapter 4.4 along with the BT-Settl dataset.

 38

Figure 4.3: Three different raw datasets plotted in both the VIS (above) and NIR (below) spectra.
The names constitute of the date and time when the observations were carried out, as well as
whether it’s VIS or NIR wavelengths.

 39

4.2.2 BT-Settl Data

The BT-Settl data set constitutes of in total 4046 files, each one with between
350,000 and 1,200,000 measurements, covering the full spectra (both VIS and
NIR). The relevant parameter ranges for M-type stars are chosen as
temperature (1200	 ≤ 	𝑇#$$ ≤ 	4900	𝐾) in steps of 100 K, the surface gravity in

the range −0.5	 ≤ 	log 𝑔 	≤ 	+5.5 with 0.5	𝑐𝑚/𝑠l steps, and the metallicity span
(−0.5	 ≤ 𝑀 𝐻⁄ ≤ 	+4.0) in 0.5 intervals. Values for alpha enhancement are also
included with the range 0.0	 ≤ 	𝐹𝑒 𝐻⁄ 	≤ 	0.4	 in 0.2 intervals. However, these will
later be discarded for their small influence as well as for being partly included
in the metallicity. Neglecting them will thus have very small impact.
 Three BT-Settl files are plotted and displayed in Figure 4.4. One with
parameters 𝑇#$$ = 1200	𝐾, 	log𝑔 = −3.0 and 𝑀 𝐻⁄ = 0 (black), another with

𝑇#$$ = 1200	𝐾, 	log𝑔 = −3.5 and 𝑀 𝐻⁄ = 0 (red) and a last one with 𝑇#$$ = 1200	𝐾,

	log𝑔 = −4.0 and 𝑀 𝐻⁄ = 0 (green). From observing the figure, it is clear that the
absolute majority of the flux is concentrated on the central left part, lower

Figure 4.4: The full spectra for the raw BT-Settl data plotted for three files. It is evident that
the majority of the Flux is concentrated on the lower left side of the spectra. We saw the same
pattern comparing the Carmenes data in chapter 4.2.1.

 40

wavelength, side of the spectra. The same pattern was observed in the Carmenes
data files, where the VIS’s flux was larger than the NIR’s with a magnitude of
1𝑒7.

Table 4.3 displays ten rows in a raw BT-Settl input data file with
parameter values 𝑇#$$ = 1200	𝐾, 	log𝑔 = −3.0 and 𝑀 𝐻⁄ = 0, for wavelengths and

stellar Flux. It can be noted that the flux values are extremely low for the lowest
(<≈ 0.2𝑒u) wavelengths. Due to resolution issues in Figure 4.4, it might seem
like the plot is contradicting the data displayed in Table 4.3. However, closer
investigations of the raw BT-Settl files confirms that this is not the case. See
Appendix B for access to these files (they are too big to fit into this report).

lte012.0-3.0-0.0a+0.0 Angstrom Flux
190 0.000 8.040810e-98
191 0.000 8.040810e-98
192 0.000 8.040810e-98
193 0.000 8.040810e-98
194 0.001 8.040810e-98
195 0.001 8.040810e-98
196 0.001 8.040810e-98
197 0.001 8.040810e-98
198 0.001 8.040810e-98
199 0.001 8.040810e-98

Table 4.3: Raw BT-Settl input data as displayed in Figure 4.4 in black, with parameter values
𝑇#$$ = 1200	𝐾, 	𝑙𝑜𝑔 𝑔 = 3.0 and 𝑀 𝐻⁄ = 0. Very small flux values are detected for the lower
wavelengths.

4.3 Pre-processing the Carmenes Data Set

The first step in pre-processing the Carmenes data set is to cut the data to align
all corresponding orders with each other. That is, all the first orders in all the
VIS files have to be adjusted so they start and end at the same wavelengths,
and all the second orders have to be aligned to start and end at the same
wavelengths and so on. As the NaN values are removed when loading the data,
the orders don’t cover the same wavelength span anymore. This is solved by

 41

choosing the highest common wavelength among all the lowest wavelengths for
the first order in all VIS files and choose this as the new common lowest
wavelength for the first order. All lower wavelengths in that order will be
discarded. Conversely, the lowest wavelength among the highest wavelengths
for the first order in all VIS files will be chosen as the new common highest
wavelength for the first order. All higher wavelengths for that order will be
discarded. The same procedure will be repeated for all the 61 orders and for all
the VIS files. The NIR files will be processed in the same way.

There exist some smaller differences in wavelengths (normally ≤ 0.05%)
between equivalent wavelengths among the Carmenes data files. In order to get
an exact alignment across all the data, the average wavelength for each
individual measurement, or line, among all the files will be calculated replacing
the current wavelengths. VIS and NIR files will be treated separately equally
as before.

All the Carmenes VIS data files now share exactly the same wavelength
intervals, but with different fluxes, unique for every file. The equivalent is true
for the NIR data. Figure 4.5 depicts the same three datasets as displayed in
Figure 4.3 for, now normalised, VIS (top) and NIR (bottom) files.

 42

Figure 4.5: Normalised Carmenes for VIS (top) and NIR (bottom). The same three datasets as in
Figure 4.3 are displayed.

 43

4.4 Preparing for Power Matrices

To be able to analyse the data with a regression approach using CNNs, the data
needs to be transformed into images, or matrices (see chapter 3.1.3). The
matrices are representing the power spectra for flux per order, and must have
the same wavelengths in both the Carmenes and BT-Settl datasets to be
comparable.

As the synthetical BT-Settl dataset already is clean, there is no need for
any substantial pre-processing other than removing the initial first rows
containing meta data in each file. This is easily done when loading the data.
 The main idea in this step is to try to see the BT-Settl data from the
Carmenes data’s perspective. We do this by using the Carmenes data’s
wavelengths together with the processed BT-Settl’s flux values.

This is a complicated task, both in terms of coding and of optimising the
process to run as fast as possible. The initial solution processed one BT-Settl file
in 16 hours. With 4046 files to process, this would have taken far too long to be
feasible. After several solution iterations during several weeks of work, 1,020
BT-Settl data files were eventually managed to be processed in little less than
48 hours. Due to time reasons in the project, only roughly a quarter of the total
dataset was processed.

Code Snip 4.1 displays the function (create_btsettl_data_FINAL)
performing the heavy calculations in the convolutions. Starting by loading the
Carmenes data and selecting the Carmenes wavelength (CW) on the 𝑛=>
position. The function “find_nearest” (see Code Snip 4.2), will subsequently find
the nearest wavelength, among all the wavelengths in the loaded BT-Settl data
that corresponds to CW. Choosing 50 flux values above and 50 below (nv = 50)
gives a window of 100 for the calculation of these fluxes’ impact on that
wavelength. The choice of the window size is justified by that fluxes further
away have little or no impact on that particular wavelength. Pixel resolution R
is high for the Carmenes matrix and set to 82,000. The last operation performed

 44

by the function is a standardisation of energy per order by equalling the area to
1. This will make the flux energy indifferent to the distance between the Earth
and the observed star, making the data comparable.

def create_btsettl_data_FINAL(carmenes_data, file_names, output):
 """ Convolution of the BT-Settl and Carmenes data sets.
 'file_names' is a list of BT-Settl data file names, output is a string,
 either "NIR" or "VIS". """
 if output.upper() == "NIR":
 light = "_NIR"
 elif output.upper() == "VIS":
 light = "_VIS"
 else:
 print("Some kind of in(out)put error has occured")

nv, R = 50, 82000
for name in file_names:
 order = 0
 data = get_btsettl_data_byName(name)
 name = name + light
 for m in range(len(carmenes_data[0])):
 small_list = []
 for n in range(len(carmenes_data[0][0])):
 """Perform the necessary calculations"""

 # Get the n’th wavelength value from the carmenes dataset,
 # store it in the variable 'look_here'
 look_here = float(copy.deepcopy(carmenes_data[0][m].values[n,0]))

 # Select the BT-Settl wavelengths
 ar = data['Angstrom'].values

 # Get the wavelength among the BT-Settl wavelengths
 # that is closest to the 'look_here variable'
 use_this = find_nearest(ar,look_here)

 # Get the corresponding index
 itemindex = np.where(ar==use_this)[0]

 # Convert to integers and floats
 ind = int(itemindex[int(0)])
 use_this = float(use_this)

 # Convolution intervals
 xsg1 = ind - nv
 xsg2 = ind + nv

 # Apply these intervals to the BT-Settl data

 45

 xsgA = data["Angstrom"].iloc[xsg1:(xsg2+1)]
 xsgF = data["Flux"].iloc[(xsg1-1):xsg2]

 # Calculate the impact from the chosen BT-Settl flux values
 xt = copy.deepcopy(use_this)
 sgm = float(use_this/(R*2*np.sqrt(2.*np.log(2.))))
 flt = np.exp(-(xsgA - xt)**2/(2*sgm**2))/(np.sqrt(2*np.pi)*sgm)

 # Calculate the sum of this impact, reverse xsgF before multiplying
 xsgA2 = data["Angstrom"].iloc[(xsg1-1):(xsg2+1)]
 the_sum = np.sum(np.diff(xsgA2)*flt*xsgF[::-1])

 # Add the newly calculated flux to the Carmenes data to the adequate
 # position
 temp = copy.deepcopy(carmenes_data[0][m].iloc[n,:])
 temp["Flux"] = the_sum
 small_list.append(temp)

 # Add some space
 temp_list = []
 temp_list.append(' ')
 temp_list.append(' ')
 temp_list.append("#order: {0}".format(order))
 pd.DataFrame(temp_list).to_csv(create_btsettl_path(name),
 header=False, index=False, mode="a")
 order += 1

 # Create the dataframe
 df = pd.DataFrame(small_list)

 # Convert the df to numerical values
 df = df.apply(pd.to_numeric, errors='ignore')

 # Calculate the Rolling mean for the Flux and equal the "area below" to 1.
 temp_df = (df["Flux"].rolling(2).mean()[1:]*(np.diff(df["Angstrom"])))
 df["Flux"] = df["Flux"]/temp_df.sum()

 # Write to file
 df.to_csv(create_btsettl_path(name), header=False, index=False, mode="a")

Code Snip 4.1: Function for the BT-Settl and Carmenes convolution calculations.

The substantial speed improvements were achieved mainly through two
implementations: more efficient and smarter functions, and by using
multiprocessing.

The biggest impact on the speed was the implementation of the
“find_nearest” function, displayed in Code Snip 4.2. The function cut the

 46

processing time per file around 30 times, from 16 hours to around 30 min, by
using a bisection method rather than iterating over every single value. This
method is normally a lot faster for larger datasets, with the only requirement
that the data should be monotonically increasing, which is the case for the
wavelengths (this is checked before initiating).

The idea behind this method is to divide the data into two equal halves,
subsequently checking whether the desired value is higher or lower than the
mid threshold dividing the two halves. If higher, the half above the threshold
will be chosen, and if lower, the other half will be selected. The same procedure
will be repeated until the desired value’s closest counterpart is found in the data.
Hence, this approach divides that amount of data to be searched over by half for
every iteration.

def find_nearest(array,value):
 '''Given an 'array' , and given a 'value' , returns a value j such that 'value' is
 between array[j] and array[j+1]. 'array' must be monotonic increasing. j=-1 or
 j=len(array) is returned to indicate that 'value' is out of range below and above
 respectively.'''

 n = len(array)
 if (value < array[0]):
 return -1
 elif (value > array[n-1]):
 return n
 jl = 0 # Initialise lower
 ju = n-1 # and upper limits.
 while (ju-jl > 1): # If we are not yet done,
 jm=(ju+jl) >> 1 # compute a midpoint with a bitshift
 if (value >= array[jm]):
 jl=jm # and replace either the lower limit
 else:
 ju=jm # or the upper limit, as appropriate.
 # Repeat until the test condition is satisfied.
 up_dif = np.abs(value-array[jl-1])
 down_dif = np.abs(value-array[jl+1])
 if (value == array[0]): # edge cases at bottom
 return 0
 elif (value == array[n-1]): # and top
 return n-1
 elif up_dif > down_dif:
 return array[jl+1]
 elif up_dif < down_dif:

 47

 return array[jl-1]
 else:
 return array[jl]

Code Snip 4.2: The “find_nearest” function, which when implemented, cut the processing time
around 30 times, from 16 hours per file to around 30 min. Source [41], plus added functionality
for this Master’s Thesis.

 By using a computer with multiple processors, it was possible to
implement multiprocessing, and by this cutting the time even more (see
Appendix B, Code Snip B2 for the code). By dedicating 16 cores, one file per core,
the improvements were around 16 times. It shall be clarified that this method
doesn’t intend to process one file as fast as possible. Instead, by processing 16
files in parallel, it will be possible to process 16 files during the same time as
one file took before. Thus, it can be argued that the processing time per file is
cut by 16.

Consequently, implementing the “find_nearest” function, making use of
multiprocessing and some other minor improvements, cut the total processing
time per file around 750 times. From 16 hours to around 75 seconds on average.

The resulting data, now adequate for creating power matrices, is
displayed in Figure 4.6 for VIS (top) and NIR (bottom). Both plots display
slightly more homogeneous patterns compared to their raw equivalents in
Figure 4.3.

 48

Figure 4.6: Pre-processed VIS (top) and NIR (bottom) data now ready for power matrices.

 49

4.5 Power Matrix Creation

The chosen approach for power matrix creation is the one proposed by Torrence
and Compo (1998) [42], implemented in a wavelet spectral analysis module
(PyCWT) for Python [43]. The function carrying out the transformation can be
found in Appendix B, Code Snip B.3.
 According to research reviewed in chapter 2.1, ICA is the best
transformation technique for power matrices. However, as the data constitutes
of several orders for each wavelength interval, ICA would apply one
transformation function for each order. To keep the current desired relation
between the different orders, Morlet Wavelet function is a better fit. It’s a fixed
function and would thus apply the same transformation on all orders. Morlet
Wavelet with (𝜔P = 6) is chosen.

The power matrices are rescaled to the interval [0, 255], before the
datatype is converted to float16, or “short”. This is done to save disk space and
loading time during training later on. With the initial choice of float64 datatype,
the resulting power matrices occupied around 400 MB (for NIR) and 600 MB
(for VIS) each. The datatype choice reduced the disk space more than tenfold,
but with the cost of a slightly loss in resolution. However, the loss was
considered negligible and thus acceptable.

2044 power matrices were created, out of potentially 8096 from the data
collected, where the total size of the created matrices was around 93 GB. The
spectrogram for the power matrix with parameters 𝑇#$$ = 1200	𝐾, 	log𝑔 = −3.5

and 𝑀 𝐻⁄ = 0, NIR order 0, is displayed in Figure 4.7. Order 0 refers to the first
order as Python is a 0-indexed programming language. Although trivial in the
context, the first position in a list is always the 0th position.

Table 4.4 provides a comprehensive overview over the created power
matrices.

 50

 VIS NIR

Matrices created 1020 1024
Size 7747 x 2871 3724 x 4073
Number of Orders 61 28
Total size on disk (GB) 55 38

 Table 4.4: Summary over the created power matrices.

 51

Figure 4.7: Spectrogram as a result of plotting the power matrix with parameters 𝑇#$$ = 1200	𝐾,
	𝑙𝑜𝑔 𝑔 = −3.5 and 𝑀 𝐻⁄ = 0 for NIR, Order 0. This matrix will subsequently be processed with
the CNN.

 52

 53

Chapter 5 CNN Analysis

5.1 CNN Architecture

5.1.1 Main CNN Architecture

Designing a CNN architecture is a complicated task, many choices have to be
made, regarding number of layers of each type, how to stack them in relation to
each other, hyperparameters for each type of layer such as activation functions,
kernel size, stride etc. etc. The combination of different parameters is so large
that a conventional approach is to find a great solution on a similar problem,
use that architecture and keep on optimising it for the problem at hand, while
testing the performance on the test data. Although the hardware used for the
project was fairly powerful (2x8 cores 3,7 MHz AMD CPU, 16GB RAM, 4GB
GeForce GTX GPU), careful considerations had to be taken into account to keep
the architecture as nimble as possible in relation to the input dimension.
 Following this approach, the architecture displayed in Figure 2.2,
designed by the NVIDIA team, was chosen as starting point. However, applying
this model directly generated 7,4 billion trainable parameters for the
architecture, and would impossibly fit within the capacity of the hardware.
Substantial changes had to be made.

As the NVIDIA team’s input size was small (66	𝑥	200) in comparison to
the power matrices’ size of 3724	𝑥	4073 for NIR and 7747	𝑥	2871 for VIS, more
Conv layers were added to keep the total amount of parameters at a minimum.
By increasing the amount of Conv layers and lowering the amount of fully
connected Dense layers, the amount of network parameters was kept to a
minimum without compromising performance [29]. Initiating the first Conv
layers with a lower dimensionality in the output space, i.e. filters (𝑓𝑖𝑙𝑡𝑒𝑟𝑠	 =

 54

	16), and successively double this to 𝑓𝑖𝑙𝑡𝑒𝑟𝑠	 = 	1024 in the last layers, while
doing the opposite with the kernel size, from (7	𝑥	7) to (3	𝑥	3), was in accordance
with the approach. ReLU activation function was used for all the hidden layers
as it’s much faster when training more complex models, see Chapter 3.2.1.

A common practice is to insert Pooling layers in intervals in-between
successive Conv layers in a CNN structure. Their main objective is to reduce the
spatial size and thus, reduce the amount of parameters, leading to more efficient
model training. They also reduce overfitting and by this generate a model with
higher performance on unseen data. Choosing Max Pooling layers over Average
or Global pooling layers is motivated by results and conclusions drawn in earlier
studies [44] [45].

A Flatten layer is added to flatten the input to two dimensions, before
three fully connected Dense layers are added to step wise lower the parameter
size. The last Dense layer’s output dimension is a 1	𝑥	3 vector, referring to the
three physical parameters this project aims to estimate. As our approach has
been to regress the parameter values, rather than classify them, a linear
activation function must be chosen in this last Dense layer. The two previous
Dense layers are still activated through a ReLU activation function.

Despite minimising the parameter size extensively, the computer’s GPU
memory wasn’t able to handle the big input sizes. Errors were constantly
thrown when the model tried to fit the initial or one of the subsequent layers.
As a result, the power matrices are down-sized twice for NIR (to	1862	𝑥	2036)
and three times for the slightly larger VIS matrices (to	2582	𝑥	957). See chapter
5.2 for further explanations of how this was solved. Several other combinations
were tried and evaluated as well, see chapter 5.1.2.

All in all, the architecture constitutes of 8 Conv layers, in conjunction
with 8 Max Pooling layers, followed by a Flatten layer and three fully connected
Dense layers. The total amount of trainable parameters when NIR matrices are
fitted is 19,6 million, while 18,9 million for the slightly more resized VIS
matrices. Table 5.1 displays the final main CNN architecture fitted on NIR

 55

matrices while Figure 5.1 depicts it in a more illustrative way. The implemented
Keras code is found in Appendix B, Code Snip B.7.

Layer (type) Output Shape Param #
===
conv2d_65 (Conv2D) (None, 1856, 2030, 16) 2368

max_pooling2d_65 (MaxPooling (None, 928, 1015, 16) 0

conv2d_66 (Conv2D) (None, 922, 1009, 32) 25120

max_pooling2d_66 (MaxPooling (None, 461, 504, 32) 0

conv2d_67 (Conv2D) (None, 455, 498, 64) 100416

max_pooling2d_67 (MaxPooling (None, 227, 249, 64) 0

conv2d_68 (Conv2D) (None, 223, 245, 128) 204928

max_pooling2d_68 (MaxPooling (None, 111, 122, 128) 0

conv2d_69 (Conv2D) (None, 107, 118, 256) 819456

max_pooling2d_69 (MaxPooling (None, 53, 59, 256) 0

conv2d_70 (Conv2D) (None, 49, 55, 512) 3277312

max_pooling2d_70 (MaxPooling (None, 24, 27, 512) 0

conv2d_71 (Conv2D) (None, 22, 25, 1024) 4719616

max_pooling2d_71 (MaxPooling (None, 11, 12, 1024) 0

conv2d_72 (Conv2D) (None, 9, 10, 1024) 9438208

max_pooling2d_72 (MaxPooling (None, 4, 5, 1024) 0

flatten_10 (Flatten) (None, 20480) 0

dense_29 (Dense) (None, 50) 1024050

dense_30 (Dense) (None, 20) 1020

dense_31 (Dense) (None, 3) 63
===
Total params: 19,612,557
Trainable params: 19,612,557
Non-trainable params: 0

Table 5.1: The main CNN architecture fitted on a NIR matrix, constituting of eight Conv, in
conjunction with, eight Max Pooling layers, one Flatten layer and three fully connected Dense
layers. In total 19,6 million trainable parameters

 56

Figure 5.1: Main CNN Architecture with eight
Conv and eight MaxPooling layers, one Flatten
layer and three Fully connected layers.

 57

5.1.2 Alternative CNN Architectures

As the main CNN architecture was fairly complex with many parameters to
train, other more simple alternatives were implemented and tested. In the
context of studying earlier work, by L.M. Sarro et al. [2017] among others, see
chapter 2.3, it was suspected that effective temperature was stronger correlated
with the spectra than, in particular, metallicity. Thus, a more downscaled input
size could still yield satisfying estimations for 𝑇#$$, while at the same time

decreasing training time and hardware requirements.
As a consequence, the input size was downscaled, not only twice as for the

main NIR model and three times for the VIS model, but 5, 10, 20 and 30 times
as well. The same methodology as described in chapter 5.1.1 was applied in
terms of filter and kernel sizes. However, as the size of the data fed into the
model was substantially smaller, the last Conv layers threw “Negative
dimension size” errors. The reason for this was the negative spatial size obtained
after several down sampling operations by the hidden Pooling layers. This was
solved by removing the last Conv and Max Pooling layers as the down-sizing
was increased.

The resulting architectures have 7,5 million (down-sizing 5), 4,5 million
(down-sizing 10), 1,0 million (down-sizing 20) and 340,000 (down-sizing 30)
parameters. Tables are to be found in Appendix C for the resulting architectures
while Figures 5.2 − 5.4 below depicts them in a more illustrative way.

It shall be noted that the architectures for 10 and for 20 down-sizing are
the same, even though the number of parameters is 4.5 times as high for the
first one.

 58

Figure 5.2: CNN Architecture with 7.5 million
hyper parameters and down-sizing 5.

 59

Figure 5.3: CNN Architecture with 4.5 million
hyper parameters and down-sizing 10. The model
architecture is equal to the one for 1.0 million
hyper parameters and 20 down-sizing, despite
that the number of parameters is around one
fifth.

 60

Figure 5.4: The smallest CNN Architecture, with
340.000 hyper parameters and a down-sizing of
the input data by 30.

 61

5.2 Feeding the Models with Data

Although the model will be trained on only 80% of the data, it still won’t fit into
the computer’s RAM or GPU memory at once. As a result, it has to be fed
concurrently during training. There are mainly two solutions for this in Keras;
one is to create a Generator and the other is to create a Sequence. They both
generate batches of data to feed the model during training. However, Keras
recommends Sequence if using multiprocessing, as it will guarantee that the
model will only train once on each sample per epoch, i.e. number of iterations
over the training set, which is not the case for Generators [46]. This is to
minimise the risk of overfitting, and was thus chosen. Nevertheless, a
Generator function was also developed for comparable reasons on single core
processing. Code Snip 5.1 displays the implemented Sequence class, while the
Generator function can be found in Appendix B.

class My_Sequence(Sequence):
 """ Generates batches of training data and ground truth.
 Inputs are the image paths and batch size.
 """
 def __init__(self, image_paths, batch_size):
 self.image_paths, self.batch_size = image_paths, batch_size

 def __len__(self):
 return int(np.ceil(len(self.image_paths) / float(self.batch_size)))

 def __getitem__(self, idx):
 batch = self.image_paths[idx * self.batch_size:(idx + 1) * self.batch_size]
 matrices, parameters = [], []
 for file_path in batch:
 mat, param, name = get_Matrix_and_Parameters(file_path)

 # Transform the matrix from 2D to 3D as a (mat.shape[0], mat.shape[1])
 # RBG image. Rescale its values to [0,1]. Set "preserve_range=True" to not
 # rescale the matrix, and by this saving memory and load time.
 mat = skimage.transform.resize(mat, (mat.shape[0]//down_size,
 mat.shape[1]//down_size, 3),
 mode='constant', preserve_range=True)
 param = MMscale_param(param, name) # Rescale the parameters
 mat = normalise(mat) # Rescale the matrix to [0, 1]

 62

 matrices.append(mat)
 parameters.append(param)
 MAT, PAM = np.array(matrices), np.array(parameters)
 PAM = np.reshape(PAM, (PAM.shape[0], PAM.shape[1]))

 gc.collect() # Garbage Collector

 return MAT, PAM

Code Snip 5.1: Displaying the Sequence class used to feed the model with data, batch-by-batch,
taking advantage of multiprocessing.

 The development of the Sequence class and the Generator function was
inspired by the examples provided in Keras documentation [46] [47]. The input
constitutes of the power matrices’ file paths and the batch size. During each
iteration, a batch-sized chunk of the file paths is chosen and the corresponding
power matrices, with its parameters and name, are loaded with the help of the
function get_Matrix_and_Parameters() (see Appendix B for the code snip). Each
matrix is subsequently transformed from a 2D matrix to a 3-dimensional RBG
image and down-sized the desired amount (2, 5, 10, 20 or 30 times), before both
the parameters and the matrix are normalised to the interval [0, 1]. This is done
through the use of the scikit-image library for Python. It is a common and
powerful library for image processing where interpolation is used for down-
sizing [48].

Normalising often leads to faster solution convergence, and thus, training
[49]. Some data collection is subsequently done to organise the output into
desired dimensions before it returns the entire batch. This procedure continues

for C#D|=>	}$	=>#	~;=;�#=
�;=�>	�V�#

 number of times and is repeated epoch times.

5.3 Train, Validate and Test Sets

As pointed out in chapter 3.4, the total dataset will be split 80% for the train
set, 10% for the validation set and the last 10% for the test set. To decrease the
risk of overfitting for some specific features, while at the same time being able
to reproduce the results, the data, i.e. file paths, are randomly shuffled in a

 63

controlled way before split. The resulting sets for NIR are 819 matrices for
training, 102 for validation and 103 for testing, while the equivalent numbers
are 816, 102 and 102 for VIS.

5.4 Normalising

Both the stellar parameters and the power matrices are scaled, or normalised,
to the interval [0, 1] for faster convergence and thus, lower training time. The
solution for the matrices is quite straight forward as there isn’t any need for
reversing the scaling afterwards. The calculation is followed by the equation:

 𝑥D#@ =
𝑥 − 𝑥�VD

𝑥�;� − 𝑥�VD
 (5)

Where 𝑥D#@ is the new, normalised value, x is the original value and 𝑥�VD and
𝑥�;� are the min and max values in the power matrix respectively. This is also
referred to as a min-max normalisation since the scaling is done in reference to
the min and max values in the data.
 The stellar parameters have to be addressed slightly different, owing to
the fact that the exact relation between the min and max values have to be
stored to enable the scaling to be reversed after training. This is done through
the library scikit-learn and by making use of the class MinMaxScaler [50]. By
creating a MinMaxScaler with the exact name as corresponds to the stellar
parameters (the power matrix’s name), and fitting it onto the data, the scaling
variables will be stored in the scaler, which later can be called by the exact name
to reverse the process. Two functions, MMscale_param() and Un_scale_data(),
are created for this purpose, while dictionaries,
many_MinMaxScalers_NIR_param() (and an equivalent for VIS), are created
for storing the MinMaxScalers. See Appendix B, Code Snip B.4 for the
corresponding implementation.

 64

5.5 Extracting the Physical Stellar Parameters

In accordance with the objective of this Master’s Thesis to determine the
physical stellar parameters, the three parameters have to be extracted from the
power matrices’ names and stored in a vector. This is implemented within the
function get_Matrix_and_Parameters() (see Appendix B, Code Snip B.6 for the
code snip).
 Although the names presents with some difficulties as they have some
irregularity and with different lengths, they still have some commonalities
which helps in the extraction. The approach here is to find something common
to split the string by. The alpha parameter is firstly removed by splitting by an
“a” or an “_”. Effective temperature, surface gravity and metallicity are all split
by a “+” or by a “−”, starting from behind. A vector of size [1	𝑥	3] is subsequently
returned by the function.

5.6 Training the CNN Models

The same architecture but two different models will be chosen. One trained on
the NIR data and one on the VIS data. Before starting the training procedure,
the models have to be compiled. Adam (short for Adaptive Moment Estimation)
is chosen as the optimiser since it has shown to work well across a wide range
of network architectures and is easy to implement, computationally efficient and
performs well on larger datasets [51].

Several learning rates are tested (1𝑒��, 1𝑒��, 1𝑒��, 2𝑒��, 2.5𝑒�� and
7.5𝑒��), but a standard 𝑙𝑟	 = 1𝑒�� resulted in least prediction errors and was
ultimately chosen. MSE was selected as loss function.
 Although Keras saves several logs to be extracted after training, it doesn’t
store anything on the disk for later recuperation and inspection of runs.
Therefore, three callbacks are created. The first one, CSVLogger stores the error
over epochs. ModelCheckpoint saves the best performing model on the

 65

validation set so it can easily be loaded afterwards. This is also very useful for
continuing training an already trained model if the model hasn’t converged after
the pre-set number of epochs chosen. TensorBoard, on the other hand, provides
a visualisation of the CNN architecture, as the one displayed in Figure 5.1.
 Subsequently, the models are fit onto the data. As the data is fed batch-
by-batch, the fit_generator method is chosen. For efficiency reasons, Keras runs
it in parallel, allowing real-time data augmentation on the CPU while the
models are being trained on the GPU.
 Four cores, or workers, are used to feed the data to the RAM, as more of
them seems to fill up the memory killing the training process, while fewer
increases the training time. Max_queue_size, i.e. the amount of batches to be
prepared in advance during training, is set to 1. Also this for memory reasons
as choosing a larger batch size was considered to be more important.
 A normal batch size when training Machine Learning algorithms is
around 16, 32 or 64. But as they resulted in exhaustion of the GPU memory,
sizes of 4 and 8 were elaborated. The same memory issues led to the final choice
of size 2. The models were subsequently trained, with batch shuffling set to
True during 100 epochs for the NIR model and 150 epochs for the VIS model, as
the errors had stopped decreasing by this time. Interestingly, the VIS models
took longer to train although containing fewer, or an equal amount, of trainable
parameters than the NIR equivalent. Sometimes as much as by a factor of 2.

Code Snip 5.2 displays the implemented code for training the CNN.

num_epochs = 100

with warnings.catch_warnings(): # Catch and ignore a User warning
 warnings.simplefilter("ignore")
 fxn()

 # Log the training
 csv_logger = CSVLogger(log_path, separator=',', append=False)

 # Save the best model
 checkpointer = ModelCheckpoint(filepath=model_path, verbose=1,
 save_best_only=True)
 # Save the CNN Architecture

 66

 architecture = TensorBoard(log_dir='./Graph/NIR', histogram_freq=1,
 write_graph=True, write_images=True, write_grads=True)

 history =
NIR_model.fit_generator(generator=my_training_batch_generator_NIR,
 steps_per_epoch=(len(validation_paths_NIR) // batch_size),
 epochs=num_epochs,
 verbose=1,
 callbacks=[checkpointer, csv_logger, architecture],
 validation_data=my_validation_batch_generator_NIR,
 validation_steps=(len(validation_paths_NIR) // batch_size),
 use_multiprocessing=True,
 max_queue_size=1,
 workers=4,
 shuffle=True)

Code Snip 5.2: The implemented code for the CNN training process.

 67

Chapter 6 Results and Discussion

6.1 Model Validation

Before any predictions can be made with the trained models, their performance
have to be validated. This is done by plotting the MSE, per epoch for both the
training and validation sets. Figure 6.1 below illustrates this for both the VIS
(top) and NIR (bottom) models. Note that the errors were substantially higher
during the first epoch. These data points were therefore treated as outliers, and
thus, removed for plotting.
 The first impression of studying the curves is their somewhat noisy
appearance. A reasonable explanation for this is the small batch size resulting
in slightly oscillating error rates between individual epochs. See Figure 3.5 for
comparable plots. With the size of the input data, the resulting size of the
architecture and the subsequent amount of trainable parameters, in
combination with the hardware restrictions, it can be considered as tolerable.
 The error curves are overall following an acceptable descent, resulting in
convergence after around 80 epochs for the NIR model and after roughly 120
epochs for the VIS model. Note that the VIS model takes longer to converge, and
is thus, trained for more epochs. Total training time is approximately 18h for
the NIR model and 37h for VIS. The NIR model returns a training MSE of
0.000137 and a validation error of 0.000208, while the VIS model achieves errors
of 0.000140 on the training set and 0.000226 on the validation set.
 Training and validation errors for both models are very similar in size,
giving us confidence that the models can be trusted. Also, the errors are larger
on the validation sets than on the training sets, which normally is the case.
Although the errors are smaller on the training set, we shouldn’t necessarily

 68

Figure 6.1: Training and validation errors for NIR (top) and VIS (bottom) for the main CNN
architecture. Note that the errors are substantially higher in the first epoch. By treating them
as outliers, they are removed for the plot.

 69

draw any extensive conclusions based on this as the error curves are oscillating
quite heavily. Nevertheless, this is in general a valid approach and it
strengthens the confidence in the models’ predictions.

Remember that the models haven’t been trained on the validation set.
Producing an error close to the errors obtained during training is therefore a
good indicator of their validity. In other words, the models aren’t overfitted on
the training data and can generalise well on previous unseen data. The models
should therefore be able to produce satisfying estimations on the test set a well.

6.2 Estimating Temperature, Surface Gravity and Metallicity

6.2.1 NIR

Having reassured the models’ trustworthiness, they can now be used for
estimations on previous unseen data. Figure 6.2 displays the predicted, in black,
and true, in red, values for effective temperature (top), surface gravity (centre)
and metallicity (bottom) for ten different spectra, or test runs (A through J), for
the NIR model. The letters represents the same power matrices with
corresponding spectra across all three sub plots.

The overall verdict is that the NIR model performs very well on the test
data. Especially for 𝑇#$$ the model estimates the true values with an

impressively low MSE of 0.000079 over the test set. The equivalent errors are
0.000005 and 0.003318 for log𝑔 and 𝑀 𝐻⁄ respectively. The relation between the
errors are in accordance with the suspicions stated in chapter 5.1.2, regarding
𝑇#$$ being the parameter with strongest correlation to the spectra. Errors are

calculated within two standard deviations of the mean, meaning the model
predicts with these error rates on 95% of the data. However, as for the plots
concerning, no such division has been made. They display ten arbitrary spectra
among all the test spectra. The total MSE over the three parameters in total on
all the test data is 0.00010. It is by a factor of 2 lower than the validation error
(0.000208) and roughly in the same size as the training MSE (0.000137), which

 70

Figure 6.2: Predicted (black) and true (red) values for effective temperature, surface gravity and
metallicity for the main NIR model on 10 different spectra.

Errors:
12 – 27K
(≈ 1.0%)

Errors:
≈ 1.4%

Errors:
≈ 1.9%

 71

can be considered as plausible. The reason for the testing error being smaller
might be due to the too small size of the test set. Contemplate the less biased
median squared errors confirms the conclusions drawn on the MSE
observations. These errors are also displayed on each sub-plot. Comparing the
1.9% median error (not squared) for metallicity with the slightly different
Machine Learning approach applied by L. M. Sarro et al. [2017], see chapter 2.3,
they are some 35 times better.

Matching the calculated errors against the visualisations display a
similar pattern. The disparity between red and black piles for each spectra for
𝑇#$$ are very small, while they’re slightly bigger for log 𝑔 and metallicity. This

seems in general to be valid across all the plotted spectra.
 As some metallicities’ true values are zero (e.g. F and G), the overall error
percentage will be higher when the predicted values are non-zero (i.e. the
difference in percentage for F and G are 100%). This might explain the larger
error for 𝑀 𝐻⁄ in relation to log𝑔 (0.003318 vs. 0.000005) although the visual
disparities aren’t as obvious when comparing the two plots.
 See table 6.1 for a summary over mean and median squared errors for the
NIR model’s performance over the test set.

Performance, NIR model
Total MSE 0.000103
MSE Effective Temperature 0.000079
MSE Surface Gravity 0.000005
MSE Metallicity 0.003318
Median Sq. Error Eff. Temp. 0.000080
Median Sq. Error Surf. Gravity 0.000196
Median Sq. Error Metallicity 0.000359

 Table 6.1: Summary over the NIR model’s performance.

 72

6.2.2 VIS

Predictions for ten different (A through J) visual wavelength spectra by the VIS
model are plotted in Figure 6.3, 𝑇#$$ (top), log𝑔 (central) and 𝑀 𝐻⁄ (bottom). Just

as for NIR, the VIS model estimates 𝑇#$$ with a very high precision of 0.000003

MSE, while slightly worse for log𝑔 (0.018612) and 𝑀 𝐻⁄ (0.091275). They are
calculated in the same way as for the NIR model. This seems plausible, also
when studying the plots, as the disparity between piles are smaller for 𝑇#$$ than

for log𝑔 and 𝑀 𝐻⁄ .
Generally speaking, the same conclusions drawn on the NIR predictions

can be made on VIS. Identical as for NIR, the VIS model estimates surface
gravity with a higher precision than metallicity. These observations are
strengthened by the median squared errors (0.000002 vs. 0.004638). Overall
MSE for the VIS model on the entire test set is 0.000136, slightly above NIR’s
0.00010, but still in the same magnitude. For easier comparison, the median
errors are displayed on each sub-plot, equally as for NIR. The VIS models seems
to estimate 𝑇#$$ (0.30% vs. 1.0%) and log𝑔 (0.14% vs. 1.4%) with a slightly higher

precision than the NIR model.
A summary over the VIS model’s performance over the training set is

displayed in Table 6.2.

Performance, VIS model

Total MSE 0.000136
MSE Effective Temperature 0.000003
MSE Surface Gravity 0.018612
MSE Metallicity 0.091275
Median Sq. Error Eff. Temp. 0.000008
Median Sq. Error Surf. Gravity 0.000002
Median Sq. Error Metallicity 0.004638

 Table 6.2: Summary over the VIS model’s performance.

 73

Figure 6.3: Predicted (black) and true (red) values for effective temperature, surface gravity
and metallicity for the main VIS model on 10 different spectra.

Errors:
2 – 5K

(≈ 0.30%)

Errors:
≈ 0.14%

Errors:
≈ 6.8%

 74

6.3 Alternative CNN Architectures’ Predictions

6.3.1 NIR down-sized 5, 10, 20 and 30 times

Figures 6.4, 6.5 and 6.6 respectively, display the effective temperature, surface
gravity and metallicity for the four downsized NIR input models; 5, 10, 20 and
30. The MSE on the entire test set over all three physical parameters for the
four models are 0.00039, 0.00081, 0.00320 and 0.00102, respectively.
 In terms of effective temperature (Figure 6.4), all four models perform
very well, even the most down-sized, 30 times, estimates with the very low MSE
of 0.000056. Compare this with the full model’s MSE on 𝑇#$$ of 0.000079 and the

more down-sized model seemingly performs better. However, the small size of
the test data and the fact that the errors have been calculated within two
standard deviations of the mean might affect the results in favour for the more

Figure 6.4: Effective temperature estimated by the 5 (top left), 10 (top right), 20 (bottom left)
and 30 (bottom right) down-sized input data for the NIR models.

 75

down-sized input data. Comparing the medians, which are very similar in size,
indicate that this might be the case. Nevertheless, a logical conclusion to make
is still, as far as for 𝑇#$$ on NIR concerning, there are no big disadvantages in

down-scaling the input size. Training will go faster and local drive storage will
take up less space, without compromising on precision.
 With regards to log𝑔, there are larger differences in the error size when
comparing the models. The least down-scaled model (x5), yields an MSE of
0.0015, while the most down-scaled (x30) has an error of 0.0080. It is thus a
factor 5 smaller for the more down-scaled model. When comparing it with the
main model’s performance of 0.000005, the differences are substantial. The main
model outperforms x5 by almost 300 times and x30 by around 1,600 times. The
differences for the x10 and x20 models in relation to the main model are 520 and
around 7,500 times respectively. A comparison over the median values follows
the same line. This can be interpreted as down-sizing the input data, with the
goal of estimating log𝑔, will affect the results substantially, already after doing
so by a smaller fraction. The features, related to estimate log𝑔 in the spectra,
are thus very sensitive to down-scaling and will easily be lost. It would therefore
be interesting to train a model on a full scaled input size model and learn the
result from that. An even more potent GPU would be needed though.
 In terms of metallicity, the MSE for the x5 model is 0.00277 while it’s
0.0501 for the x30 model. The differences in performance are some 18 times
between the x5 and the x30 model. This is confirmed when comparing the
medians as well. A non-trivial amount of information is thus lost when down-
sizing, although not as much as for log𝑔. If top performance for 𝑀 𝐻⁄ is desired
however, the input data should be kept in original size.
 Table 6.4 displays a summary over the models’ performance while Table
6.5 displays the training time.

 76

Figure 6.5: Surface gravity estimated by the 5 (top left), 10 (top right), 20 (bottom left) and 30
(bottom right) down-sized input data for the NIR models.

Figure 6.6: Metallicity estimated by the 5 (top left), 10 (top right), 20 (bottom left) and 30
(bottom right) down-sized input data for the NIR models.

 77

6.3.2 VIS down-sized 5, 10, 20 and 30 times

Figures 6.7, 6.8 and 6.9 displays the four down-sized inputs, 5, 10, 20 and 30
times, on VIS for effective temperature, surface gravity and metallicity
respectively. The MSE per model, see Table 6.3, over all three physical stellar
parameters on the test set are 0.00066, 0.00028, 0.00076 and 0.00032, from least
down-sized to most, respectively.

Equally as for NIR, 𝑇#$$ is estimated with a very high precision by the

VIS models, yielding the low MSE of 0.000058 by the most downscaled model.
By investigating Figure 6.7, this low error rate can be visually observed as the
discrepancy between the predicted and true values are overall very small for all
four models. Although not as low as for the main model, we can still conclude,
equally as for the NIR models, that the features the CNN learn in order to
estimate the corresponding temperature for a spectrum is very well preserved,

Figure 6.7: Effective temperature estimated by the 5 (top left), 10 (top right), 20 (bottom left)
and 30 (bottom right) down-sized input data for VIS.

 78

even though substantial down-sizing of the input data has been applied. The low
median values, displayed in Table 6.3, across all models confirms this.

In terms of log 𝑔, it seems that the x10 down-sized model continuously
overestimates the true values, while the rest appears to underestimate them,
see Figure 6.8. The model with the lowest error is, surprisingly, the most
downscaled x30. With an MSE of 0.0013 it actually outperforms the main
model’s error of 0.019 ten times. This can probably partly be explained by the
small test set which fails in estimating the models’ performance accurately.
Nevertheless, comparing the squared medians, 0.0031 (for x30) and 0.000002
(for main), yields the opposite insights. Median values are less biased for
outliers and should thus be a better predictor of the models’ performance.
Taking this into consideration, the main model outperform all others by a large
margin (1500 times in relation to x30).

Exploring the results on 𝑀 𝐻⁄ however, see Figure 6.9 and Table 6.3,
displays a uniform performance advantage for the more down-sized models. The
best performing model’s squared median, x5, of 0.000001 and MSE of 0.0330 are
both better than the main model’s equivalents (0.0046 and 0.091 respectively).
The best explanation to this is thus the small test set who fails in estimating
the models’ performance accurately and that the error has been calculated on
two standard deviations of the error. Both of which can benefit the more down-
sized model.

The training time for the different NIR and VIS models are displayed in
Table 6.4. The VIS models takes in general around twice as long time to train.

 79

Figure 6.8: Surface gravity estimated by the 5 (top left), 10 (top right), 20 (bottom left) and 30
(bottom right) down-sized input data for VIS. Note that some of the true values are equal to
zero.

Figure 6.9: Metallicity estimated by the 5 (top left), 10 (top right), 20 (bottom left) and 30
(bottom right) down-sized input data for VIS.

 80

 Median squared
Model summary NIR (MSE) VIS (MSE) NIR VIS
x5 Effective Temperature 0.000154 0.000237 0.000129 0.000289
x5 Surface Gravity 0.001514 0.184926 0.002462 0.063007
x5 Metallicity 0.002774 0.032663 0.012741 0.000001
x5 Total 0.000389 0.000661 ------------ ------------
x10 Effective Temperature 0.000123 0.000054 0.000099 0.000064
x10 Surface Gravity 0.002595 0.001861 0.002822 0.004042
x10 Metallicity 0.051235 0.000140 0.213698 0.000043
x10 Total 0.000813 0.000275 ------------ ------------
x20 Effective Temperature 0.000002 0.000066 0.0000004 0.000039
x20 Surface Gravity 0.037693 0.013175 0.007739 0.000149
x20 Metallicity 0.001388 0.154711 0.101900 0.001923
x20 Total 0.003196 0.000761 ------------ ------------
x30 Effective Temperature 0.000056 0.000058 0.000073 0.000064
x30 Surface Gravity 0.007950 0.001268 0.009446 0.003123
x30 Metallicity 0.050085 0.001189 0.031612 0.000002
x30 Total 0.001020 0.000319 ------------ ------------
Main model Eff. Temp 0.000079 0.000003 0.000080 0.000008
Main model Surface Gravity 0.000005 0.018612 0.000196 0.000002
Main model Metallicity 0.003318 0.091275 0.000359 0.004638
Main model Total 0.000103 0.000136 ------------ ------------

Table 6.3: MSE summary over the down-sized and the main models’ performance on the test set.

Model Training time
x5 NIR 3h 20min
x5 VIS 8h 30min
x10 NIR 3h 40 min
x10 VIS 9h
x20 NIR 3h
x20 VIS 4h 20min
x30 NIR 2h 20min
x30 VIS 4h
main NIR 17h 30min
main VIS 36h 30min

Table 6.4: Summary over training time for down-sized 5, 10 20, 30 and the main models. The
VIS models takes roughly twice as long time to train than the NIR equivalents.

 81

6.4 Estimated parameters for the Carmenes datasets

Estimated physical parameters for the Carmenes data are displayed in Table
6.5 and 6.6 below for the main NIR and VIS models respectively. Note that it is
the same nine matrix names in both tables, with the only difference being the
wavelengths.

There’s quite some disparity between the estimated values for the NIR
and VIS models. Ideally, they would differ little, and this seems to be the case
for log	(𝑔). As for 𝑇#$$ and 𝑀 𝐻⁄ however, the estimations are diverging in a

larger extent. There might be several reasons for this. The most crucial one is
whether the models trained on the theoretical BT-Settl dataset are able to
describe the observed Carmenes spectra in a satisfying way. It is expected to be
so, but there are no such guarantees.

The individual contribution from each order in the spectra creation might
also play a part. The assumption of equal contribution might be flawed, leading
to important information losses, and thus, lower model performance on the
Carmenes dataset.

A third reason might be that the VIS model seems to estimate 𝑇#$$ with

a higher precision than the NIR model, which in turn better estimates log	(𝑔)
and 𝑀 𝐻⁄ (see chapter 6.2). Taking this into account, it’s plausible that the
estimations differ extensively merely because of the models’ capability in
estimating the different parameters.

One, or a combination, of the abovementioned reasons are most likely the
cause for the differences when estimating 𝑇#$$ and 𝑀 𝐻⁄ with the NIR and VIS

models.

 82

Matrix name Eff. Temperature (K) Surface Gravity Metallicity

car-20170520T20h38m14s-sci-gtoc-nir 2260 1,9 -1,1
car-20170609T20h33m03s-sci-gtoc-nir 2411 1,7 -1,8
car-20170822T01h54m18s-sci-gtoc-nir 2356 1,8 -1,3
car-20170825T00h06m21s-sci-gtoc-nir 2418 1,7 -1,9
car-20170911T01h42m21s-sci-gtoc-nir 2355 1,8 -1,3
car-20170912T02h41m57s-sci-gtoc-nir 2355 1,8 -1,3
car-20170913T21h52m13s-sci-gtoc-nir 2412 1,6 -1,3
car-20170914T03h24m58s-sci-gtoc-nir 2367 1,7 -1,5
car-20170924T20h42m07s-sci-gtoc-nir 2401 1,7 -1,2

 Table 6.5: Estimated parameters for the Carmenes data set on NIR.

Matrix name Eff. Temperature (K) Surface Gravity Metallicity

car-20170520T20h38m14s-sci-gtoc-vis 2791 2,0 0,1
car-20170609T20h33m03s-sci-gtoc-vis 2782 1,8 0,3
car-20170822T01h54m18s-sci-gtoc-vis 2845 1,9 -0,3
car-20170825T00h06m21s-sci-gtoc-vis 2796 2,2 0,4
car-20170911T01h42m21s-sci-gtoc-vis 2854 1,9 -0,7
car-20170912T02h41m57s-sci-gtoc-vis 2813 2,2 0,4
car-20170913T21h52m13s-sci-gtoc-vis 2742 2,1 2,6
car-20170914T03h24m58s-sci-gtoc-vis 2783 1,8 1,1
car-20170924T20h42m07s-sci-gtoc-vis 2813 2,1 0,4

 Table 6.6: Estimated parameters for the Carmenes data set on VIS.

 83

Chapter 7 Organisational Aspects

7.1 Gantt Chart

A Gantt chart is shown in Figure 7.1 below, displaying all the mayor events for
the project. A total of 6 months have to be devoted if the tasks are to be solved
consecutively. Several steps can be done in parallel however, such as pre-
processing the Carmenes and BT-Settl datasets, developing a data generator
and extracting the physical stellar parameters as well as training both the NIR
and VIS models on two machines. The report and the presentation can also
partly be worked on in parallel during a more extended part of the development
process.

Nevertheless, around 1200 manhours are needed, from understanding
the problem at hand to render reliable estimations for the physical stellar
parameters and finally deliver the report. Another 24 hours can be added for
preparing the presentation for stakeholders.

 84

Fi
gu

re
 7

.1
: G

an
tt

Ch
ar

t o
ve

r t
he

 p
ro

je
ct

.

 85

7.2 Budget

The project’s total budget is summarised in Table 7.1 below. The total product
expenses are estimated to 4,682€ while the labour cost is approximated to
15,300€. This is calculated through considering an engineer with one year of
experience working on the project full time with an average Spanish salary for
an industrial or software engineer with similar experience. With taxes and
profit margin included, the total cost of the project is estimated to 27,362,69€.

 Table 7.1: The project’s total cost is 27 362,69€.

27 362,69€

ITEM NAME ITEM DESCRIPTION UNITS € / UNIT TOTAL

Computer Sufficiently powerful 1 2 000,00€ 2 000,00€
Software MO license per month 6 7,00€ 42,00€
Softwares Open source 1 -$ -$
Office Space Necessary facilities 6 405,00€ 2 430,00€
Miscellaneous Paper, pencils etc. 1 20,00€ 20,00€
Electricity kwh 800 0,24€ 189,60€

4 681,60€

TASK NAME TASK DESCRIPTION HOURS € / HOUR TOTAL

Engineer 1 year of experience 1224 12,50€ 15 300,00€

15 300,00€

ITEM NAME % Sum TOTAL
Profit Margin 5% 765,0€ 20 746,60€
Cost Margin 9% 1 867,2€ 22 613,79€
VAT 21% 4 748,9€ 27 362,69€

27 362,69€

PRODUCT EXPENSES

Project Title; CNN Project TOTAL COST:

Operational margins and Taxes

PRODUCT EXPENSE TOTAL

LABOR EXPENSES

LABOUR EXPENSE TOTAL

 86

 87

Chapter 8 Conclusions and Future Work

8.1 Conclusions

Due to the vast amount of planets to search in the universe, several approaches
are being tested to focus the hunt on the most promising ones. The objective of
this Master’s Thesis has been to evaluate the capabilities of Deep Learning with
a regression approach to estimate physical parameters from observed stars’
spectra. It is the first time this approach is tested for physical parameter
estimation. These parameters are important in learning more about the star
and its orbiting planets.
 By pre-processing the data in several steps, spectra were created and
subsequently processed by CNNs. The models were trained on NIR and VIS
separately.
 The results indicate that it is possible to estimate physical stellar
parameters with the use of CNNs on spectra with regression, yielding higher
precision than earlier, among these, Machine Learning approaches.

Especially effective temperature was estimated with the low median
squared errors of 0.000079 and 0.000003 for NIR and VIS respectively. This is
equivalent to errors in the range 12 − 27𝐾 and 2 − 5𝐾, respectively, for M-type
stars spanning the effective temperature range of 1300 − 3000𝐾.

Regarding surface gravity, MSEs are 0.000005 and 0.018612 for NIR and
VIS, which are equivalent to errors of 0.0002dex and 0.14dex respectively.
Metallicity on the other hand is estimated with MSEs of 0.003318 and 0.091275,
or errors of 0.058dex and 0.30dex for NIR and VIS. This can be compared with
the metallicity errors of 0.25dex from earlier research by L. M. Sarro et al.
[2017].

 88

The referred errors in this conclusions section are the ones obtained
through the main models as they are considered to be more reliable. Although
they seemingly perform worse on some individual occasions (see Table 6.3) it
can mainly be explained by the small test set not being able to fully capture the
models’ performance accurately.

The NIR model seems to estimate metallicity with highest precision while
the VIS model does it for effective temperature and surface gravity, when the
less biased median squared errors are taken into account.

Although the main models are considered to be more reliable, the down-
sized versions still estimate with high precision across most parameters. This
has also practical implications as the code and the models can be fitted onto
different GPU cards with various capacities.

The trained models were subsequently used to estimate the physical
parameters on the observed Carmenes dataset where the estimations for these
are displayed in Tables 6.5 and 6.6. Training has been performed on theoretical
spectra, and although expected, there are no guarantees that these spectra are
sufficiently “similar” to the real Carmenes spectra to output reliable
estimations. The differences between the NIR and VIS estimations indicate that
further research in various directions is needed.

8.2 Future Work

Pre-processing large amounts of data and then analyse it with deep neural
networks isn’t a trivial task if one wants to obtain good results. There are many
decisions to be taken along the way and one can argue for and against each one
of them. However, there are some matters that might be extra interesting for
future research or investigations.
 The first thing would be to process all the data at hand, creating more
power matrices with resulting spectra. During this Master’s Thesis, there was

 89

only time for processing 2044 (1024 NIR and 1020 VIS) files, out of total 8096
(4046 NIR and 4046 VIS). As for Deep Learning concerning, larger datasets are
almost always considered as better since the model would by this have more
data to be trained on, yielding both better parameter estimations and
subsequent model evaluations.
 Little research has been done on the Adam optimiser since it has fairly
recently been introduced. A common approach in Machine Learning though is
letting the learning rate decay over the training epochs. It would thus be
interesting to try this approach on the problem at hand for Adam.
 There is also the alternative of using transfer learning, by removing the
top layers of an already trained model, add some new ones on top, and train the
new layers on the data at hand. This approach has frequently resulted in state
of the art results. However, as these models often are trained on images that are
very different from the spectrograms in this project (such as on ImageNet, in
the case of the high performance Xception model [44]), the decision was made
not to proceed in this way. Nevertheless, this approach has proven very
successful for medical image analysis among others [52], where the applied CNN
method is very similar to the one used in this Master’s Thesis.
 Initially, the assumption was made that every order contributes equally
in representing the power matrices and the subsequent spectra, and they were
thus stacked equally during the power matrix creation. However, this
assumption should be questioned as there are no guarantees that this is the
case. Further research should investigate this by, for example, creating one
model for each order and assigning a confidence interval for each one of them
when testing on the BT-Settl dataset.
 As mentioned in the conclusion section, further investigations have to be
conducted to learn whether a model trained on the theoretical BT-Settl data is
able to describe the observed Carmenes spectra with confidence. Since the
differences are quite substantial between the NIR and the VIS models’
estimations, especially for 𝑇#$$ and 𝑀 𝐻⁄ , this would thus be a priority in further

research.

 90

 Since 𝑇#$$ seemingly is stronger correlated with the spectra, these

estimations can be collected and used for further training of the model. The
resulting model will thus have more training data, and might as a result, yield
better estimations for log𝑔 and 𝑀 𝐻⁄ .

 91

Bibliography

[1] NASA, Jet Propulsion Laboratory, “Overlooked Treasure: The
First Evidence of Exoplanets,” California Institute of Technology, 01
11 2017. [Online]. Available:
https://www.jpl.nasa.gov/news/news.php?feature=6991. [Accessed
09 08 2018].

[2] A. W. &. D. A. Frail, “A planetary system around the
millisecond pulsar PSR1257 + 12,” nature - International journal of
science, pp. 145-147, 09 01 1992.

[3] NASA, “Mission overview Kepler and K2,” NASA, [Online].
Available:
https://www.nasa.gov/mission_pages/kepler/overview/index.html.
[Accessed 09 08 2018].

[4] NASA, “Exoplanet Discoveries, Latest Data from NASA's
Exoplanet Archive,” NASA, 08 08 2018. [Online]. Available:
https://exoplanets.nasa.gov. [Accessed 09 08 2018].

[5] NASA, “Warm welcome: finding habitable planets,” NASA,
[Online]. Available: https://exoplanets.nasa.gov/the-search-for-
life/habitable-zones/. [Accessed 09 08 2018].

[6] NASA, “How Many Stars in the Universe?,” NASA, 14 06
2012. [Online]. Available:
https://helios.gsfc.nasa.gov/qa_star.html#howmany. [Accessed 09 08
2018].

[7] J. T. Wright, “Radial Velocities as an Exoplanet Discovery
Method,” Cornell University Library, 2017.

 92

[8] A. a. t. C. C. Quirrenbach, “CARMENES: Calar Alto high-
Resolution search for M dwarfs with Exo-earths with a Near-
infrared Echelle Spectrograph,” in CARMENES, 2009.

[9] CARMENES Consortium, “CARMENES Consortium,”
[Online]. Available:
https://carmenes.caha.es/ext/consortium/index.html#top. [Accessed
16 08 2018].

[10] Carmenes Consortium, “Carmenes, Science,” Carmenes
Consortium, [Online]. Available:
https://carmenes.caha.es/ext/science/index.html. [Accessed 16 08
2018].

[11] L. M. Sarro, J. Ordieres-Meré, A. Bello-García, A. González-
Marcos and E. Solano, “Estimates of the atmospheric parameters of
M-type stars: a machine learning perspective.,” Madrid, 2017.

[12] IESE Business School, “10 Ways Artificial Intelligence Is
Transforming Management - Conference gathers top business
leaders and academics to look at data-fueled future,” Barcelona,
2018.

[13] A. Krizhevsky, I. Sutskever and G. E. Hinton, “ImageNet
Classification with Deep Convolutional Neural Networks,”
University of Toronto, Toronto, 2012.

[14] K. Zhou and B. Kainz, “Efficient Image Evidence Analysis of
CNN Classification Results,” Imperial College London, London,
2018.

[15] D. Hsu, “Using Convolutional Neural Networks to Classify
Dog Breeds,” Stanford University, Stanford, California, 2016.

[16] F. Wang, M. Jiang, C. Qian, S. Yang and C. Li, “Residual
Attention Network for Image Classification,” Hong Kong, Beijing,
2017.

 93

[17] Szegedy, Christian; Liu, Wei; Jia, Yangqing; Sermanet,
Pierre; Reed, Scott; Anguelov, Dragomir; Erhan, Dumitru;
Vanhoucke, Vincent; Rabinovich, Andrew; Google Inc.; University of
North Carolina; University of Michigan, “Going deeper with
convolutions,” Google Inc., 2014.

[18] Z.-H. Zhou and J. Feng, “Deep Forest,” Nanjing University,
Nanjing, 2018.

[19] Z.-H. Zhou and J. Feng, “Deep Forest: Towards an Alternative
to Deep Neural Networks,” Nanjing University, Nanjing, 2017.

[20] A. Gonzáles-Marcos, L. M. Sarro, J. Ordieres-Meré and A.
Bello-García, “Evaluation of data compression techniques for the
inference of stellar atmospheric parameters from high-resolution
spectra,” Oxford University Press, pp. 4556-4571, 23 11 2016.

[21] NVIDIA Corporation, “End to End Learning for Self-Driving
Cars,” NVIDIA Corporation, Holmdel, NJ, USA, 2016.

[22] S. Miao, Z. Jane Wang and R. Liao, “A CNN Regression
Approach for Real-Time 2D/3D Registration,” IEEE, New Jersey,
2016.

[23] Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, IEEE, 1998.

[24] C. Alexis, H. Schwenk, Y. LeCun and L. Barrault, “Very Deep
Convolutional Networks for Text Classification,” 2017.

[25] A. van den Oord, S. Dieleman, and B. Schrauwen, “Deep
content-based music recommendation,” 2013.

[26] J. Russell, “techcrunch.com,” 15 03 2016. [Online]. Available:
https://techcrunch.com/2016/03/15/google-ai-beats-go-world-
champion-again-to-complete-historic-4-1-series-
victory/?_ga=2.116547205.209713902.1534604929-
10151628.1526584328. [Accessed 18 08 2018].

 94

[27] D. H. Hubel and T. N. Wiesel, “Receptive fields and functional
architecture of monkey striate cortex,” Boston, 1968.

[28] A. Karpathy, “Neural Networks Part 1: Setting up the
Architecture,” Stanford, [Online]. Available:
http://cs231n.github.io/neural-networks-1/. [Accessed 18 08 2018].

[29] Andrej Karpathy for Stanford, “Convolutional Neural
Networks (CNNs / ConvNets),” Stanford, [Online]. Available:
http://cs231n.github.io/convolutional-networks/. [Accessed 19 08
2018].

[30] Open-source, “Activation Functions,” 2017. [Online].
Available: https://ml-
cheatsheet.readthedocs.io/en/latest/activation_functions.html.
[Accessed 19 08 2018].

[31] Andrej Karpathy for Standford University, “CS231n:
Convolutional Neural Networks for Visual Recognition,” Stanford,
2018. [Online]. Available: http://cs231n.github.io/neural-networks-
3/. [Accessed 19 08 2018].

[32] Coursera, “Structuring Machine Learning Projects,” 2018.

[33] I. Guyon, “A scaling law for the validation-set training-set
size ratio,” Berkeley, Califronia.

[34] F. Chollet, “Keras Documentation,” MIT, 27 03 2015.
[Online]. Available: https://keras.io. [Accessed 20 08 2018].

[35] Google Brain team, “About TensorFlow,” Google Inc.,
[Online]. Available: https://www.tensorflow.org. [Accessed 20 08
2018].

[36] A. Reiners, J. Bean, K. Huber, S. Dreizler, A. Seifahrt and S.
Czesla, “Detecting planets around very low mass stars with the
radial velocity method.,” ApJ 710, 2010.

 95

[37] CARMENES Consortium, “CARMENES Instrument
Overview,” CARMENES Consortium, 2014.

[38] CARMENES Consortium, “CARMENES Instrument,”
[Online]. Available:
http://carmenes.caha.es/ext/instrument/index.html. [Accessed 22 08
2018].

[39] Spanish Virtual Observatory, “Theoretical spectra web
server,” Spanish Virtual Observatory, [Online]. Available:
http://svo2.cab.inta-csic.es/theory//newov2/. [Accessed 21 08 2018].

[40] Lyon University, “FORMAT OF THE SPECTRA OUTPUT
FILES for the PHOENIX Simulator,” [Online]. Available:
https://phoenix.ens-lyon.fr/Grids/FORMAT. [Accessed 21 08 2018].

[41] J. Albert, “Stack overflow - Find nearest value in numpy
array,” 25 01 2017. [Online]. Available:
https://stackoverflow.com/questions/2566412/find-nearest-value-in-
numpy-array. [Accessed 24 08 2018].

[42] C. Torrence and G. P. Compo, “A Practical Guide to Wavelet
Analysis,” American Meterological Society (AMS), vol. 79, no. 1, pp.
61-78, 01 1998.

[43] S. Krieger, N. Freij, A. Brazhe, C. Torrence and G. P. Compo,
“Tutorial: Time-series spectral analysis using wavelets,” 2017.
[Online]. Available:
https://pycwt.readthedocs.io/en/latest/tutorial.html#f1. [Accessed 25
08 2018].

[44] F. Chollet, “Xception: Deep Learning with Depthwise
Separable Convolutions,” Google, Inc., 2017.

[45] Y. Zhang and B. C. Wallace, “A Sensitivity Analysis of (and
Practitioners’ Guide to) Convolutional Neural Networks for
Sentence Classification,” Austin, 2016.

 96

[46] François Chollet with Community, “Keras Documentation
Utils Sequence,” 2015. [Online]. Available:
https://keras.io/utils/#sequence. [Accessed 27 08 2018].

[47] François Chollet with Community, “Keras Documentation -
Sequential model methods,” 2015. [Online]. Available:
https://keras.io/models/sequential/. [Accessed 28 08 2018].

[48] S. van der Walt, J. L. Schönberger, J. Nunez-Iglesias, F.
Boulogne, J. D. Warner, N. Yager, E. Gouillart, T. Yu and a. t. s.-i.
c. , “scikit-image: image processing in Python,” PeerJ 2:e453 , New
York, 2014.

[49] A. Ng, “Normalizing inputs,” Coursera, 2018. [Online].
Available: https://www.coursera.org/lecture/deep-neural-
network/normalizing-inputs-lXv6U. [Accessed 27 08 2018].

[50] P. Fabian, V. Gaël, G. Alexandre, M. Vincent, T. Bertrand, G.
Olivier, B. Mathieu, P. Peter, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau and M. Brucher, “Scikit-learn: Machine
Learning in Python,” 2011.

[51] D. P. Kingma and J. Lei Ba, “ADAM: A METHOD FOR
STOCHASTIC OPTIMIZATION,” in ICLR, San Diego, 2015.

[52] N. Tajbakhsh, J. Y. Shin, S. R. Gurudu, R. Todd Hurst, C. B.
Kendall, M. B. Gotway, and J. Liang, “Convolutional Neural
Networks for Medical Image Analysis: Full Training or Fine
Tuning?,” arXiv:1706.00712v1, 2017.

[53] A. Saxena, “Convolutional Neural Networks (CNNs): An
Illustrated Explanation,” XRDS Crossroads - The ACM Magazine
for Students, 29 06 2016. [Online]. Available:
https://xrds.acm.org/blog/2016/06/convolutional-neural-networks-
cnns-illustrated-explanation/. [Accessed 18 08 2018].

 97

[54] Google Brain team, “TensorFlow - Large-Scale Machine
Learning on Heterogeneous Distributed Systems,” Google Inc.,
2015.

 98

 99

Appendix

Appendix A

Table A.1 displays the first ten rows in a raw Carmenes VIS input file. It
constitutes in total of around 250,000 measurements dividend into 61 orders.

 Wavelength (Angstrom) Flux 1 Flux 2
0 5136.508188 NaN NaN
1 5136.535813 NaN NaN
2 5136.563434 NaN NaN
3 5136.591053 NaN NaN
4 5136.618670 NaN NaN
5 5136.646283 NaN NaN
6 5136.673894 NaN NaN
7 5136.701502 NaN NaN
8 5136.729108 NaN NaN
9 5136.756711 NaN NaN

Table A.1: Top ten first lines of the first order in a raw Carmenes VIS input file. There are no
values for neither of the fluxes.

 100

Appendix B – Major python code snips and functions

This part of the Appendix displays some major functions and code parts which
were developed for the sake of this project. If the reader desires the full code or
the input files, he or she is most welcome to contact the author or the tutor.

"""Visual wavelength (VIS) data"""
for i in range(len(all_loaded_data_VIS[0])):
 all_min_VIS_values, all_max_VIS_values = [], []
 for j in range(len(all_loaded_data_VIS)):
 all_min_VIS_values.append(all_loaded_data_VIS[j][i].index[0])
 all_max_VIS_values.append(all_loaded_data_VIS[j][i].index[-1])

 # choose the min and max limits for each order
 VIS_min, VIS_max = max(all_min_VIS_values), min(all_max_VIS_values)

 # Align the values for all the VIS data (according to VIS_min and VIS_max)
 # so they match each other.
 for h in range(len(all_loaded_data_VIS)):
 all_loaded_data_VIS[h][i] = all_loaded_data_VIS[h][i].loc[VIS_min:VIS_max]

Code Snip B.1: Code snip for aligning the min and max values so all the equivalent orders are
within the same interval.

 101

from multiprocessing import Process

Time the process
start1 = time.time()

if __name__ == '__main__':

 try:
 mp.set_start_method('fork')
 except RuntimeError:
 pass

 number_of_cores = 16
 files_per_core = 68

 # Setup a list of processes that we want to run
 file_nbr = 0
 for _ in range(files_per_core):
 processes = []
 for _ in range(number_of_cores):
 prr = Process(target=create_btsettl_data_FINAL,
 args=(data_VIS_avg_LOCAL,
 file_names_settl[file_nbr:(file_nbr+1)], "VIS"))
 processes.append(prr)
 file_nbr += 1

 # Run processes
 for p in processes:
 p.start()

 # Exit the completed processes
 for p in processes:
 p.join()

Check how long time it took.
end1 = time.time()
tt1 = end1 - start1
print("Total run time: {0:0.0f} min and {1:3.0f} s ".format((tt1-tt1%60)/60, tt1%60))

Code Snip B.2: Implementing multiprocessing with 16 cores.

 102

def get_POWER_matrix(data, rescale=True):
 """ Returns the power matrix, the scale indices and the Fourier frequencies.
 Set 'rescale' to False if rescaling is not desired. """
 t0, dt, N = 0, 0.5, data.size
 t = np.arange(0, N) * dt*2 + t0
 p = np.polyfit(t - t0, data, 1)
 dat_notrend = data - np.polyval(p, t - t0)
 std = dat_notrend.std() # Standard deviation
 var = std ** 2 # Variance
 dat_norm = dat_notrend / std # Normalised dataset
 mother = wavelet.Morlet(6) # Morlet transformation function

 # The following routines perform the wavelet transformation using the
 # parameters defined above.
 wave, scales, freqs, coi, fft, fftfreqs = wavelet.cwt(dat_norm, dt, J=-1)
 power = (np.abs(wave)) ** 2
 if rescale == True:
 power *= 255.0/power.max() # rescale 0-255
 power = power.astype('h') # dtype = short
 scales *= 255.0/scales.max()
 scales = scales.astype('h')
 freqs *= 255.0/freqs.max()
 freqs = freqs.astype('h')
 return power, scales, freqs

def get_FULL_POWER_matrix(data):
 """ Returns the power matrix, the scale indices and the
 Fourier frequencies of "data". "data" is the pre-processed
 BT-Settl data. All orders included.
 """
 power_matrix, full_scales, full_freqs = np.array([1]), np.array([1]), np.array([1])
 for i in range(len(data)):
 power, scales, freqs = get_POWER_matrix(data[i].loc[:, "Flux"])
 if len(power_matrix) > 10: # if no power matrix is created
 power_matrix = np.append(power_matrix, power, axis=0)
 full_scales = np.append(full_scales, scales, axis=0)
 full_freqs = np.append(full_freqs, freqs, axis=0)
 else:
 power_matrix = np.array(power)
 full_scales = np.array(scales)
 full_freqs = np.array(freqs)
 return power_matrix, full_scales, full_freqs

def plot_data(data, rescale=True):
 """ Plot the data for a single order. data is a one column array. """
 t0, dt, N = 0, 0.5, data.size
 t = np.arange(0, N) * dt*2 + t0
 p = np.polyfit(t - t0, data, 1)

 103

 dat_notrend = data - np.polyval(p, t - t0)
 std = dat_notrend.std() # Standard deviation
 var = std ** 2 # Variance
 dat_norm = dat_notrend / std # Normalised dataset
 mother = wavelet.Morlet(6) # Morlet transformation function
 s0 = 2 * dt # Starting scale, in this case 2 * 0.25 years = 6 months
 dj = 1 / 48 # Twelve sub-octaves per octaves
 J = -1
 alpha, _, _ = wavelet.ar1(data) # Lag-1 autocorrelation for red noise

 # The following routines perform the wavelet transformation using the
 # parameters defined above.
 wave, scales, freqs, coi, fft, fftfreqs = wavelet.cwt(dat_norm, dt, J=-1)
 power = (np.abs(wave)) ** 2
 if rescale == True:
 power *= 255.0/power.max() # rescale 0-255
 power = power.astype('h') # dtype = short
 period = 1 / freqs
 signif, fft_theor = wavelet.significance(1.0, dt, scales, 0,
 alpha, significance_level=0.95, wavelet=mother)
 sig95 = np.ones([1, N]) * signif[:, None]
 sig95 = power / sig95

 # Finally, we plot our results.
 plt.close('all')
 plt.ioff()
 fig = plt.figure(figsize=(12.5, 40), dpi=80)

 # Second sub-plot, the normalised wavelet power spectrum
 # and significance level contour lines and cone of influece hatched area.
 # Note that period scale is logarithmic.
 bx = plt.axes([0.1, 0.37, 0.65, 0.28])
 levels = [0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16]

 bx.contourf(t, np.log2(period), np.log2(power), np.log2(levels),
 extend='both', cmap=plt.cm.viridis)
 extent = [t.min(), t.max(), 0, max(period)]
 bx.contour(t, np.log2(period), sig95, [-99, 1],
 colors='k', linewidths=1, extent=extent)
 bx.set_ylabel('Period', fontsize=18)
 bx.set_xlabel('Index', fontsize=18)
 plt.autoscale(enable=True, axis="x", tight=True)
 Yticks = 2 ** np.arange(np.ceil(np.log2(period.min())),
 np.ceil(np.log2(period.max())))
 bx.set_yticks(np.log2(Yticks))
 bx.set_yticklabels(Yticks, fontsize=12)
 plt.xticks(fontsize=12)
 plt.show()

Code Snip B.3: Functions for creating power matrices get_POWER_matrix and
get_FULL_POWER_matrix, as well as for plotting the corresponding Spectrogram (plot_data).

 104

def Data_Generator(image_paths, batch_size=16):
 """ Generates batches of training data and ground truth.
 Inputs are the image paths and batch size.
 """
 L = len(image_paths)

 while True:
 batch_start = 0
 batch_end = batch_size
 while batch_start < L:
 matrices, parameters = [], []

 # Select the batch
 batch = image_paths[batch_start:batch_end]
 limit = min(batch_end, L)

 for path in batch:
 # Get the matrix, parameters and the name
 mat, param, name = get_Matrix_and_Parameters(path)

 # Transform the matrix from 2D to 3D as a
 # (mat.shape[0], mat.shape[1]) RBG image.
 # Rescale its values to [0,1]. Set "preserve_range=True" to not
 # rescale the matrix, and by this saving memory and load time.
 mat = skimage.transform.resize(mat, (mat.shape[0]//down_size,
 mat.shape[1]//down_size, 3),
 mode='constant', preserve_range=True)

 # Scale and normalise the parameters and the matrix
 param = MMscale_param(param, name)
 mat = normalise(mat)

 matrices.append(mat)
 parameters.append(param)

 # Convert the lists into arrays and reshape the
 # parameter array to (batch size, number of parameters)
 MAT, PAM = np.array(matrices), np.array(parameters)
 PAM = np.reshape(PAM, (PAM.shape[0], PAM.shape[1]))

 # Output the matrix and parameters array. Delete the data
 # from RAM after it's been used to save memory
 yield MAT, PAM

 batch_start += batch_size
 batch_end += batch_size
 gc.collect()

 Code Snip B.4: Data Generator to feed the model with data during training batch by batch.
Evaluated on single core processing.

 105

def MMscale_param(param, name):
 """ A function for scaling the parameters in param.
 name is the matrix name from where the parameters origin.
 """
 if "NIR" in name:
 scalers = many_MinMaxScalers_NIR_param
 elif "VIS" in name:
 scalers = many_MinMaxScalers_VIS_param
 else:
 print('Have you entered a valid name?')

 scaled_param = scalers[name].fit_transform(param.reshape(-1, 1))
 return scaled_param

def Un_scale_data(scaled_param, name):
 """ A function for unscaling the parameters
 in the variable scaled_param.
 """
 if "NIR" in name:
 scalers = many_MinMaxScalers_NIR_param
 elif "VIS" in name:
 scalers = many_MinMaxScalers_VIS_param
 else:
 print('Have you entered a valid name?')

 un_scaled_param = scalers[name].inverse_transform(scaled_param.reshape(-1,1))
 return un_scaled_param

NIR_paths = get_MATRIX_paths("NIR")

many_MinMaxScalers_NIR_param = {}
for i_s in range(len(NIR_paths)):
 name = os.path.basename(NIR_paths[i_s])[:-4]
 many_MinMaxScalers_NIR_param["{0}".format(name)]=MinMaxScaler(
 feature_range=(0,1), copy=True)

Code Snip B.5: Displays the creation of MinMaxScalers for the NIR data as well as the two
functions used to call the scalers for scaling and reversing the same.

 106

Two functions for extracting the parameters (𝑇#$$, 	log𝑔 and 𝑀 𝐻⁄) from a power

matrix’s name are displayed in Code Snip B.6. get_Matrix_and_Parameters()
returns the parameters, the matrix and corresponding matrix name.

def get_Matrix_and_Parameters(path):
 """ Returns the matrix stored in 'path', with the corresponding parameters
 (Temperature, Surface Gravity and Metallicity)
 """
 matrix = pd.read_csv(path) # load the power matrix
 parameters = []
 filename = os.path.basename(path)[:-4]
 name = filename

 # Process the file name and extract the individual parameters.
 # Store them in a list.
 #####
 # Remove the alpha parameter and do some editing to the file name
 for l in str(filename):
 if 'a' in l: # if 'a' is in the file name
 d = 'a'
 break
 else:
 d = '_'
 filename = substring_before(filename[3:], d)[0]

 # Extract the Temperature
 for l in str(filename[:6]):
 if '-' in l:
 d1 = '-'
 break
 elif '+' in l:
 d1 = '+'
 break
 else:
 pass
 p, rest = substring_before(filename, d1)
 parameters.append(float(p))

 # Extract the Surface gravity, Log(G)
 for l in str(rest[2][:5]):
 if '-' in l:
 de = '-'
 break
 elif '+' in l:
 de = '+'
 break
 else:
 pass

 107

 p1, rest1 = substring_before(rest[2], de)
 parameters.append(float(d1 + p1))

 # Extract the Metallicity
 for l in str(rest[2]):
 if '-' in l:
 de1 = '-'
 break
 elif '+' in l:
 de1 = '+'
 break
 else:
 pass
 p2, rest2 = substring_before(rest[2], de1)
 parameters.append(float(rest2[1] + rest2[2]))
 #####
 return matrix.values, np.array(parameters), name

def substring_before(s, delim):
 """ Divide the string 's' at 'delim' and
 return both what's before and after.
 """
 before = s.partition(delim)[0]
 all = s.partition(delim)
 return before, all

Code Snip B.6: Functions for extracting the parameters from a power matrix.

 108

def CNN_model_FULL(input_shape):
 """ Create the model architecture. """
 model = Sequential()

 model.add(Conv2D(16, (7, 7), input_shape=input_shape, activation='relu'))
 model.add(pooling.MaxPooling2D(pool_size=(2, 2)))

 model.add(Conv2D(32, (7, 7), activation='relu'))
 model.add(pooling.MaxPooling2D(pool_size=(2, 2)))

 model.add(Conv2D(64, (7, 7), activation='relu'))
 model.add(pooling.MaxPooling2D(pool_size=(2, 2)))

 model.add(Conv2D(128, (5, 5), activation='relu'))
 model.add(pooling.MaxPooling2D(pool_size=(2, 2)))

 model.add(Conv2D(256, (5, 5), activation='relu'))
 model.add(pooling.MaxPooling2D(pool_size=(2, 2)))

 model.add(Conv2D(512, (5, 5), activation='relu'))
 model.add(pooling.MaxPooling2D(pool_size=(2, 2)))

 model.add(Conv2D(1024, (3, 3), activation='relu'))
 model.add(pooling.MaxPooling2D(pool_size=(2, 2)))

 model.add(Conv2D(1024, (3, 3), activation='relu'))
 model.add(pooling.MaxPooling2D(pool_size=(2, 2)))

 model.add(Flatten())
 model.add(Dense(50, activation='relu'))
 model.add(Dense(20, activation='relu'))
 model.add(Dense(3, activation="linear"))

 model.summary()

 return model

Code Snip B.7: CNN Architecture for the final model.

 109

Appendix C – Alternative CNN Architectures

5 times down-sized input size with the resulting CNN architecture.

Layer (type) Output Shape Param #
===
conv2d_1 (Conv2D) (None, 738, 808, 16) 2368

max_pooling2d_1 (MaxPooling2 (None, 369, 404, 16) 0

conv2d_2 (Conv2D) (None, 363, 398, 32) 25120

max_pooling2d_2 (MaxPooling2 (None, 181, 199, 32) 0

conv2d_3 (Conv2D) (None, 177, 195, 64) 51264

max_pooling2d_3 (MaxPooling2 (None, 88, 97, 64) 0

conv2d_4 (Conv2D) (None, 84, 93, 128) 204928

max_pooling2d_4 (MaxPooling2 (None, 42, 46, 128) 0

conv2d_5 (Conv2D) (None, 38, 42, 256) 819456

max_pooling2d_5 (MaxPooling2 (None, 19, 21, 256) 0

conv2d_6 (Conv2D) (None, 17, 19, 512) 1180160

max_pooling2d_6 (MaxPooling2 (None, 8, 9, 512) 0

conv2d_7 (Conv2D) (None, 6, 7, 1024) 4719616

max_pooling2d_7 (MaxPooling2 (None, 3, 3, 1024) 0

flatten_1 (Flatten) (None, 9216) 0

dense_1 (Dense) (None, 50) 460850

dense_2 (Dense) (None, 20) 1020

dense_3 (Dense) (None, 3) 63
===
Total params: 7,464,845
Trainable params: 7,464,845
Non-trainable params: 0

Table C.1: CNN architecture for 5 times down-sized input size.

 110

10 times down-sized input size with the resulting CNN architecture.

Layer (type) Output Shape Param #
===
conv2d_1 (Conv2D) (None, 366, 401, 16) 2368

max_pooling2d_1 (MaxPooling2 (None, 183, 200, 16) 0

conv2d_2 (Conv2D) (None, 177, 194, 32) 25120

max_pooling2d_2 (MaxPooling2 (None, 88, 97, 32) 0

conv2d_3 (Conv2D) (None, 82, 91, 64) 100416

max_pooling2d_3 (MaxPooling2 (None, 41, 45, 64) 0

conv2d_4 (Conv2D) (None, 37, 41, 128) 204928

max_pooling2d_4 (MaxPooling2 (None, 18, 20, 128) 0

conv2d_5 (Conv2D) (None, 14, 16, 256) 819456

max_pooling2d_5 (MaxPooling2 (None, 7, 8, 256) 0

conv2d_6 (Conv2D) (None, 3, 4, 512) 3277312

max_pooling2d_6 (MaxPooling2 (None, 1, 2, 512) 0

flatten_1 (Flatten) (None, 1024) 0

dense_1 (Dense) (None, 100) 102500

dense_2 (Dense) (None, 20) 2020

dense_3 (Dense) (None, 3) 63
===
Total params: 4,534,183
Trainable params: 4,534,183
Non-trainable params: 0

Table C.2: CNN architecture for 10 times down-sized input size.

 111

20 times down-sized input size with the resulting CNN architecture.

Layer (type) Output Shape Param #
===
conv2d_1 (Conv2D) (None, 182, 199, 16) 1216

max_pooling2d_1 (MaxPooling2 (None, 91, 99, 16) 0

conv2d_2 (Conv2D) (None, 87, 95, 32) 12832

max_pooling2d_2 (MaxPooling2 (None, 43, 47, 32) 0

conv2d_3 (Conv2D) (None, 39, 43, 64) 51264

max_pooling2d_3 (MaxPooling2 (None, 19, 21, 64) 0

conv2d_4 (Conv2D) (None, 17, 19, 128) 73856

max_pooling2d_4 (MaxPooling2 (None, 8, 9, 128) 0

conv2d_5 (Conv2D) (None, 6, 7, 256) 295168

max_pooling2d_5 (MaxPooling2 (None, 3, 3, 256) 0

conv2d_6 (Conv2D) (None, 2, 2, 512) 524800

max_pooling2d_6 (MaxPooling2 (None, 1, 1, 512) 0

flatten_1 (Flatten) (None, 512) 0

dense_1 (Dense) (None, 100) 51300

dense_2 (Dense) (None, 20) 2020

dense_3 (Dense) (None, 3) 63
===
Total params: 1,012,519
Trainable params: 1,012,519
Non-trainable params: 0

Table C.3: CNN architecture for 20 times down-sized input size.

 112

30 times down-sized input size with the resulting CNN architecture.

Layer (type) Output Shape Param #
===
conv2d_1 (Conv2D) (None, 122, 133, 16) 448

max_pooling2d_1 (MaxPooling2 (None, 61, 66, 16) 0

conv2d_2 (Conv2D) (None, 59, 64, 32) 4640

max_pooling2d_2 (MaxPooling2 (None, 29, 32, 32) 0

conv2d_3 (Conv2D) (None, 27, 30, 64) 18496

max_pooling2d_3 (MaxPooling2 (None, 13, 15, 64) 0

conv2d_4 (Conv2D) (None, 12, 14, 128) 32896

max_pooling2d_4 (MaxPooling2 (None, 6, 7, 128) 0

conv2d_5 (Conv2D) (None, 5, 6, 256) 131328

max_pooling2d_5 (MaxPooling2 (None, 2, 3, 256) 0

flatten_1 (Flatten) (None, 1536) 0

dense_1 (Dense) (None, 100) 153700

dense_2 (Dense) (None, 20) 2020

dense_3 (Dense) (None, 3) 63
===
Total params: 343,591
Trainable params: 343,591
Non-trainable params: 0

Table C.4: CNN architecture for 30 times down-sized input size.

